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Abstract

Robustness to changes in illumination conditions as well
as viewing perspectives is an important requirement for
many computer vision applications. One of the key fac-
tors in enhancing the robustness of dynamic scene analy-
sis is that of accurate and reliable means for shadow de-
tection. Shadow detection is critical for correct object de-
tection in image sequences. Many algorithms have been
proposed in the literature that deal with shadows. How-
ever, a comparative evaluation of the existing approaches is
still lacking. In this paper, the full range of problems un-
derlying the shadow detection are identified and discussed.
We classify the proposed solutions to this problem using a
taxonomy of four main classes, called deterministic model
and non-model based and statistical parametric and non-
parametric. Novel quantitative (detection and discrimina-
tion accuracy) and qualitative metrics (scene and object in-
dependence, flexibility to shadow situations and robustness
to noise) are proposed to evaluate these classes of algo-
rithms on a benchmark suite of indoor and outdoor video
sequences.

1. Introduction

Moving object segmentation is an essential issue in
many computer vision applications dealing with image se-
quences. Moving shadows do, however, cause serious prob-
lems while extracting moving objects, due to the misclas-
sification of shadow points as foreground. Shadows can
cause merging of objects, object shape distortion and even
object losses (due to the shadow cast over another object).
The difficulties associated with shadow detection arise since
shadow and objects share two important visual features.
Shadows are dark and typically differ significantly from the
background and they have the same motion as the objects
casting them.

In literature there are many different approaches to mov-
ing object segmentation from image sequences, based on

inter-frame differencing, background subtraction, optical
flow, statistical point classification or feature matching and
tracking. However, neither motion segmentation nor change
detection methods can distinguish between moving objects
and moving shadows. For this reason, the efforts of com-
puter vision community in finding robust shadow detection
algorithms have intensified in the recent years.

In this paper we present a survey of shadow detection ap-
proaches, providing both a classification and a comparative
evaluation of representative algorithms present in literature.
This comparison will take into account both the advantages
and the drawbacks of each algorithm class and will furnish
a quantitative (objective) and qualitative (subjective) evalu-
ation of them.

In the next Section the approaches to detect shadows are
organized in a taxonomy in Section 2. Each approach is de-
tailed and discussed to emphasize its strengths and its limits.
Section 3 presents the evaluation metrics chosen to compare
the approaches and outlines their relevance, while Section 4
reports the quantitative and qualitative experimental results.
Conclusions end the paper.

2. Taxonomy of shadow detection algorithms

Most of the proposed approaches take into account the
shadow model described in [18][22] . To account for their
differences, we have organized the efforts present in lit-
erature in a taxonomy. The first classification considers
whether the decision process introduces and exploits uncer-
tainty. Deterministic approachesuse an on/off decision pro-
cess, whereasstatistical approachesuse probabilistic func-
tions to describe the class membership. Introducing un-
certainty to the class membership assignment can reduce
noise sensitivity by relaxing ill-posed constraints. In the
statistical-based methods (as [16][5][10]) the parameter se-
lection is a critical issue. The work reported in [16] is an
example of theparametricapproach, whereas [5][10] are
examples of thenon-parametricapproach.

Within the deterministic class (see [12][22][3][14]), an-
other sub-classification can be based on whether the on/off
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decision can be supported by model based knowledge or
not. Choosing amodel basedapproach achieves undoubt-
edly the best results, but is, most of the times, too com-
plex and time consuming compared to thenon-model based.
Moreover, the number and the complexity of the models in-
creases rapidly if the aim is to deal with complex and clut-
tered environments with different lighting conditions, ob-
ject classes and perspective views.

Finally, we can describe each approach in terms of its
use ofspectral, spatialandtemporalfeatures. Approaches
can exploit differently spectral features, i.e. using gray level
or color information. Some approaches improve results by
using spatial information working at a region level, instead
of pixel level. Finally, some methods exploit temporal re-
dundancy to integrate and improve results.

In Table 1 we report most of the papers dealing with
shadow detection. Their spectral, spatial and temporal fea-
tures are outlined. In this paper, we focus our attention on
four algorithms (reported in bold in Table 1) representative
of three of the above-mentioned classes. The deterministic
model-based class (as, for instance, [14]) has not been con-
sidered due to its complexity and to its lack of generality.

2.1. Statistical non-parametric (SNP)

As an example of statistical non-parametric (SNP) ap-
proach we choose the one described in [8] and detailed
in [10]. This work considers thecolor constancyability
of human eyes and exploits the Lambertian hypothesis to
consider color as a product of irradiance and reflectance.
The distortion of the brightnessαi and the distortion of the
chrominanceCDi of the difference between expected color
of a pixel and its value in the current image are computed
as:
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and normalized w.r.t. their root mean square of pixeli. The
valuesα̂i andĈDi obtained are used to classify a pixel in
four categories:

C(i) =


Foreg. : ĈDi > τCD or α̂i < ταlo, else
Backg. : α̂i < τα1 and α̂i > τα2, else
Shad. : α̂i < 0, else

Highl. : otherwise
(3)

The rationale used is that shadows have similar chromaticity
but lower brightness than the background model. A statis-
tical learning procedure is used to automatically determine
the appropriate thresholds.

2.2. Statistical parametric (SP)

The algorithm described in [16] for traffic scene shadow
detection is an example of statistical parametric (SP) ap-
proach. This algorithm claims to use two sources of infor-
mation: local (based on the appearance of the pixel) and
spatial (based on the assumption that the objects and the
shadows are compact regions). The a-posteriori probabil-
ities of belonging to background, foreground and shadow
classes are maximized. The a-priori probabilities of a
pixel belonging to shadow are computed by assuming that
v = [R,G,B]T is the value of the pixel not shadowed and
by using an approximated linear transformationv̄ = Dv
(whereD = diag(dR, dG, dB) is a diagonal matrix ob-
tained by experimental evaluation) to estimate the color of
the point covered by a shadow. TheD matrix is assumed ap-
proximately constant over flat surfaces. If the background is
not flat over the entire image, differentD matrices must be
computed for each flat subregion. The spatial information is
exploited by performing an iterative probabilistic relaxation
to propagate neighborhood information.

In this statisticalparametricapproach the main draw-
back is the difficult process necessary to select the param-
eters. Manual segmentation of a certain number of frames
has to be done to collect statistics and to compute the values
of matrixD.

2.3. Deterministic non-model based with color ex-
ploitation (DNM1)

The system described in [3] is an example of determin-
istic non-model based approach (and we called it DNM1).
This algorithm works in the HSV color space. The main
reasons are that HSV color space corresponds closely to the
human perception of color [9] and it has revealed more ac-
curacy in distinguishing shadows. In fact, a shadow cast
on a background does not change significantly its hue [4].
Moreover, the authors exploit saturation information since
they note that shadows often lower the saturation of the
points. The resulting decision process is reported in the fol-
lowing equation:

SPk(x, y) =


1 if α ≤ IV

k
(x,y)

BV
k

(x,y)
≤ β

∧ (IS
k (x, y)−BS

k (x, y)) ≤ τS

∧ |IH
k (x, y)−BH

k (x, y)| ≤ τH

0 otherwise

(4)

whereIk(x, y) andBk(x, y) are the pixel values at coor-
dinate(x, y) in the input image (frame k) and in the back-
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Statistical parametric Statistical non-parametric
Paper Spectral Spatial Temporal Paper Spectral Spatial Temporal

Friedman and Russell 1997 [6] C R D Horprasert et al. 1999 [10] C R D
Miki ć et al. 2000 [16] C L D Tao et al. 2000 [23] C R D

Deterministic model based Deterministic non-model based
Paper Spectral Spatial Temporal Paper Spectral Spatial Temporal

Irvin and McKeown Jr.1 1989 [11] G L S Scanlan et al.1 1990 [19] G L S
Wang et al. 1991 [25] G R S Jiang and Ward1 1992 [12] G R S
Kilger 1992 [13] G R S Charkari and Mori 1993 [2] G R S
Koller et al. 1993 [14] G L S Sexton and Zhang 1993 [20] G L S
Onoguchi 1998 [17] G L S Funka-Lea and Bajcsy1 1995 [7] G R D

Sonoda and Ogata 1998 [21] G R S
Tzomakas and von Seelen 1998 [24] G R S
Amamoto and Fujii 1999 [1] G N/A2 D
Stauder et al. 1999 [22] G R D
Cucchiara et al. 2001 [3] C L S

Table 1. Classification of the literature on shadow detection. Most of the papers presented in literature
are classified according to the four classes proposed. Their authors, the reference work and the year
of publication are reported and the spectral, spatial and temporal features used are depicted (G=grey-
level, C=color, L=local/pixel-level R=region-level, S=static, D=dynamic).

ground model (computed at frame k), respectively.

2.4. Deterministic non-model based with spatial re-
dundancy exploitation (DNM2)

Finally, we compare the approach presented in [22]. This
is also a deterministic non-model based approach, but we
have included it because of its completeness (is the only
work in literature that deals with penumbra in moving cast
shadows).

The shadow detection is provided by verifying three cri-
teria: the presence of a ”darker” uniform region, by assum-
ing that the ratio between actual value and reference value
of a pixel is locally constant in presence of cast shadows; the
presence of a high difference in luminance w.r.t reference
frame; and the presence of static and moving edges. Static
edges hint a static background and can be exploited to de-
tect nonmoving regions inside the frame difference. More-
over, to detect penumbra the authors propose to compute the
width of each edge in the difference image. Since penum-
bra causes a soft luminance step at the contour of a shadow,
they claim that the edge width is the more reliable way to
distinguish between objects contours and shadows contours
(characterized by a width greater than a threshold).

This approach is one of the most complete and ro-
bust proposed in literature. Nevertheless, in this case the
assumptions and the corresponding approximations intro-
duced are strong and they could lack in generality. More-

1This paper addresses still images
2This paper has the unique characteristic to use the DCT to remove

shadow. The rationale used by the authors is that a shadow has, in the
frequency domain, a large DC component, whereas the moving object has
a large AC component.

over, the proposed algorithm uses the previous frame (in-
stead of the background) as reference frame. This choice
exhibits some limitations in moving region detection since
it is influenced by object speed and it is too noise sensitive.
Thus, to make the comparison of these four approaches as
fair as possible, limited to the shadow detection part of the
system, we implement the DNM2 approach using a back-
ground image as reference image, as the other three ap-
proaches do.

3. Performance evaluation metrics

In this section, the methodology used to compare the
four approaches is outlined. In order to systematically
evaluate various shadow detectors, it is useful to iden-
tify the following two important quality measures:good
detection(low error probability to detect correct shadow
points should occur) andgood discrimination(the proba-
bility to identify wrong points as shadow should be low,
i.e. low false alarm rate). The first one can be achieved
by minimizing thefalse negatives (FN), i.e. the shadow
points classified as background/foreground, while to obtain
a good discrimination, thefalse positives (FP), i.e. the fore-
ground/background points detected as shadows, should be
minimized.

A reliable and objective way to evaluate this type of
visual-based detection is still lacking in literature. In [15],
the authors proposed two metrics for moving object de-
tection evaluation: theDetection Rate (DR)and theFalse
Alarm Rate (FAR). These figures are not selective enough
for shadow detection evaluation, since they do not take into
account whether a point detected as shadow belongs to a
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Highway I Highway II Campus Laboratory Intelligent room
Sequence Type outdoor outdoor outdoor indoor indoor
Shadow strength medium high low very low low
Shadow size large small very large medium large
Object class vehicles vehicles vehicle/people people/other people
Object size large small medium medium medium
Object speed medium high low low low
Noise level medium medium high low medium

Table 2. The sequence benchmark used. The benchmark should be complete and not trivial to stress
the shadow detection capabilities of the approach under comparison. The sequence set chosen has
both indoor and outdoor scenes, including large and smoothed shadows as well as small and dark
ones. It contains different object classes with various size and speed. An evaluation of noise in the
images of each sequence is reported too.

foreground object or to the background. If shadow detec-
tion is used to improve moving object detection, only the
first case is problematic, since false positives belonging to
the background do not affect neither the object detection nor
the object shape.

For this reason, we choose as metrics theshadow detec-
tion accuracyη and theshadow discrimination accuracyξ
computed as follows:

η =
TPS

TPS + FNS
(5)

ξ =
TPF

TPF + FNF
(6)

where the subscript S stays for shadow and F for fore-
ground. TP is the number oftrue positives(i.e. the num-
ber of points correctly classified). TheTPF is the number
of ground-truth points of the foreground objects minus the
number of points detected as shadows but belonging to fore-
ground objects.

These quantitative measures do not complete the evalua-
tion. Other important features of a shadow detection algo-
rithm should be:robustness to noise, flexibility to shadow
strength, size and shape, object independence, scene inde-
pendence, computational loadanddetection of indirect cast
shadow and penumbra. Indirect cast shadows are the shad-
ows cast by a moving object over another moving object and
their effect is to decrease the intensity of the moving object
covered, probably affecting the object detection, but not the
shadow detection. However, how the algorithm deals with
them and with the penumbra problem is an evaluation pa-
rameter.

4. Quantitative and qualitative comparison

In this section, the experimental results and the quantita-
tive and qualitative comparison of the four approaches are

presented. First, a set of sequences to test the algorithms
was chosen to form a complete and non trivial benchmark
suite. We select the sequences reported in Table 2, where
both indoor and outdoor sequences are present, where shad-
ows range from dark and tight to light and large and where
the object type, size and speed vary considerably. All the in-
put sequences of the benchmark can be downloaded at the
web sitehttp://cvrr.ucsd.edu:88/aton/shadow.

4.1. Quantitative comparison

To compute the evaluation metrics described in Section
3, the ground-truth for each frame is necessary. We obtained
it by segmenting the images with a long and accurate man-
ual classification of points in foreground, background and
shadow. We prepared ground truth on tens of frames for
each video sequence representative of different situations
(dark/light objects, multiple objects or single object, occlu-
sions or not).

Results are reported in Table 3. To establish a fair com-
parison, algorithms do not implement any background up-
dating process, but compute the reference image and other
parameters from the firstN frames (withN varying with the
sequence considered). Eventually, two AVI files are avail-
able at the web sitehttp://cvrr.ucsd.edu:88/aton/shadow, re-
porting visual results of the four approaches in a subset of
theIntelligent Roomand of theHighway Isequences.

The SNP algorithm is very effective in most of the cases,
but with very variable performances. It achieves the best de-
tection performance and high discrimination accuracy in the
indoor sequences (Laboratoryand Intelligent Room), with
percentages up to 92%. However, the discrimination accu-
racy is quite low in theHighway I andCampussequences.
This can be justified by the dark aspect of the objects in
theHighway Iscene and by the strong noise of theCampus
sequence.

The SP approach achieves good discrimination accuracy
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Highway I Highway II Campus Laboratory Intelligent Room

η% ξ% η% ξ% η% ξ% η% ξ% η% ξ%

SNP 81.59% 63.76% 51.20% 78.92% 80.58% 69.37% 84.03% 92.35% 78.63% 89.92%
SP 59.59% 84.70% 46.93% 91.49% 72.43% 74.08% 64.85% 95.39% 78.50% 91.99%

DNM1 69.72% 76.93% 54.07% 78.93% 82.87% 86.65% 76.26% 89.87% 76.52% 92.32%
DNM2 75.49% 62.38% 60.24% 72.50% 69.10% 62.96% 60.34% 81.57% 71.68% 86.02%

Table 3. Experimental results. Each approach has been tested on the benchmark. For each experi-
ment the shadow detection accuracy η and the shadow discrimination accuracy ξ in percentage are
reported.

in most of the cases. Nevertheless, its detection accuracy
is poor in all the cases but theIntelligent roomsequence.
This is mainly due to the approximation of constantD ma-
trix on the entire image. Since the background can be rarely
assumed as flat on the entire image, this approach lacks in
generality. Nevertheless, good accuracy in the case ofIn-
telligent roomtest shows how this approach can deal with
indoor sequences once the constancy of theD matrix is al-
most guaranteed.

The DNM1 algorithm is the one with the most stable per-
formance, even with totally different video sequences. It
achieves good accuracy in almost all the sequences, but it
outperforms the other algorithms only in theCampusse-
quence.

The DNM2 algorithm suffers from the assumption of pla-
nar background. This assumption fails in the case of the
Laboratorysequence where the shadows are cast both on
the floor and on the cabinet. The low detection performance
in theCampussequence is mainly due to noise and this al-
gorithm has proven low robustness to strong noise. Finally,
this algorithm achieves the worst discrimination result in all
the cases. This is due to its assumption of textured objects:
if the object is not textured (or seems not textured due to
the distance and the quality of the acquisition system), the
probability that parts of the object are classified as shadow
arises. Nevertheless, this approach is very promising and
complete and outperforms the others in the more difficult
sequence (Highway II).

Summarizing, the statistical approaches show a good ro-
bustness to noise, due to statistical modeling of noise. On
the other hand, deterministic approaches (in particular if
pixel-based and almost unconstrained as DNM1) exhibit a
good flexibility to different situations. Difficult sequences,
like Highway II, require, however, a more specialized and
complete approach to achieve good accuracy.

At the web addresshttp://cvrr.ucsd.edu:88/aton/shadow
the results on theHighway I outdoor sequence and on the
Intelligent roomindoor sequence more than a hundred of
ground truth images (used for extensive evaluation) for the
Intelligent roomsequence are available. These can be used
to evaluate the results.

4.2. Qualitative comparison

In this section we evaluate the four algorithms with re-
spect to the qualitative issues presented in Section 2.

The DNM1 method is the most robust to noise, thanks
to its pre- and post-processing algorithms [3]. The capac-
ity to deal with different shadow size and strength is high
in both the SNP and the DNM1. However, the higher flex-
ibility is achieved by the DNM2 algorithm which is able to
detect even the penumbra in an effective way. Nevertheless,
this algorithm is very object-dependent, in the sense that,
as already stated, the assumption on textured objects affects
strongly the results. Moreover, the two frame difference ap-
proach proposed in [22] is weak as soon as the object speeds
increase.

The planar background hypothesis makes the DNM2 and
especially the SP approaches more scene-dependent than
the other two. Although we can not claim to have im-
plemented these algorithms in the most efficient way, the
DNM2 seems the more time consuming, due to the amount
of processing necessary. On the other hand, the SNP is very
fast.

Eventually, we try to evaluate the behaviour of the algo-
rithms in presence of indirect cast shadows (see Section 3).
The DNM2 approach is able to detect both the penumbra
and the indirect cast shadow in a very effective way. The
SP and the DNM1 methods lack in detecting indirect cast
shadows. The pixel-based decision made can not distin-
guish correctly between this type of moving shadows and
those shadows cast on the background. However, the SP

approach is able to detect penumbra, at least if sufficiently
narrow.

5. Conclusions

We can conclude that if ageneral-purpose system, able
to detect shadow in many different situations, is needed, less
assumptions should be made. For this reason, apixel-based
deterministic non-model based approach, as DNM1, assures
best results. If the main goal is to detect efficientlyevery
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kind of shadows or special shadows in one specific environ-
ment, more assumptions yield better results. For this reason,
even if it is not in this evaluation, the best choice is thede-
terministic model-based approach. In this situation, ifthe
object classes are too numerousto allow modeling of every
class, acomplete deterministic approach, like the DNM2,
should be selected. Ifthe environment is indoor, the sta-
tistical approachesare the more reliable, since the scene is
stable and constant and a statistical description is very ef-
fective. If there are different planes onto which the shadows
can be cast, an approach like SNP is the best choice.If the
shadows are scattered, narrow, or particularly ”blended”
to the environment, a region-based dynamic approach, typi-
cally deterministic, is the best choice (as DNM2 in theHigh-
way II scene reported in this paper). Finally, ifthe scene
is noisy, astatistical approach or a deterministic approach
with effective pre- and post-processing stepsshould be used.
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