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The Distributed Interactive Video Array (DIVA) 
system is developed to provide a large-scale, redundant 
cluster of video streams to observe a remote scene and 
to supply automatic focus-of-attention with event-driven 
servoing to capture desired events at appropriate 
resolutions and perspectives. Installing multiple sensors 
introduces several new research issues related to the 
system design, including handoff schemes for passing 
tracked objects between sensors and clusters, methods 
for determining the "best view" given the context of the 
traffic scene, and sensor fusion algorithms to best 
employ the strengths of a given sensor or sensor 
modality.  This paper describes our research focused on 
the development of DIVA system for traffic and 
incident monitoring. The paper describes the overall 
architecture of the DIVA system. Algorithms for vehicle 
and platoon tracking using multiple cameras, and 
experimental results using novel distributed video 
networks deployed on the campus and the interstate I-5. 

I. INTRODUCTION
There has been limited research in using 

multiple sensors and sensor modalities in traffic 
scenes to provide information not available from a 
single camera. One example, however, is the work 
presented in [1] that estimates both local and global 
traffic density from video data provided by Web 
traffic cameras in the Seattle area. Basically, most 
systems use single rectilinear CCD cameras, and use 
simple linear transforms to translate from image to 
world coordinates. While single sensor views are 
useful, dependence on a single view severely limits 
the quantity and quality of data available from the 
viewable environment, as already stated in Section I. 
Also, cars are tracked from a single, fixed 
perspective, while the best perspective with which to 
view the scene may change with time of day or traffic 
density. Current systems also use single, dedicated 
processors to analyze and record data, and do not 
provide the ability to distribute processing, select 
from an array of available sensors, or access real-time 
or archived data at multiple remote [2].  Past works in 
cross-camera correspondence can be divided into two 
categories: geometry-based and recognition-based 
[4]. In the first case, geometric features are 
transformed into the same spatial reference in order 

to allow uniform matching. In this case, explicit 
camera calibration is required [5][6].  

II. DIVA SYSTEM CAPABILITIES
The distributed interactive video array supports 

the following capabilities: 
a) Distributed video networks: to allow complete 
coverage the sensors must be placed in a wide area. 
The system has televiewing capability, i.e. all the 
sources of information are available through a 
TCP/IP connection to the distributed computer(s).  
b) Active camera systems: exploitation of redundant 
sensing is mandatory. For this reason, this framework 
must have one, or more, central “monitors” able to 
select the camera with the best view of a given area 
in response to an event. Focus-of-attention in 
multiple camera systems is a relevant, and relatively 
new, research area.
c) Multiple object tracking and handoff: to create a 
model of the environment and interact with it, the 
objects in the scene must be detected, segmented and 
tracked not only in each view but also among 
different views. This problem is usually referenced as 
the “camera handoff” problem or the “re-
identification” problem.  
d) 3-D localization: once that the object has been 
detected, tracked in different views and re-identified, 
the system should be able to assert where it is in the 
3-D world coordinates. 3-D camera coordination in a 
multicamera system in an effective way is still a 
challenging research topic.
e) Multisensor integration: how to exploit 
information from rectilinear CCD cameras, 
omnidirectional cameras and infrared cameras in an 
integrated and effective way is one of the key 
objectives of the system.  

An example is shown in Figure. 1. Figure. 1(a) 
shows a possible setup. The omnidirectional camera 
is placed on the median, whereas the four rectilinear 
cameras are at the sides of the road. Let us assume 
that an incident occurs in the zone indicated as (1) in 
Figure. 1(a): while rectilinear cameras do not cover 
that area, the omnidirectional does, even if with a 
low-resolution image. Once the incident has been 
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detected, the omnidirectional camera commands the 
rectilinear camera to move towards the incident area 
and, perhaps, to zoom on it (Figure. 1(b)).  The OD 
camera is the primary view, while the PTZ cameras 
are the secondary views.

In Figure 1(c) another example of multisensor 
coordination is reported. Referring to Figure. 1(a), an 
incident occurs in the area indicated with (2).

1

2

(a) (b)

Figure 1. Example of multisensor coordination (a) reports a 
possible setup on a freeway. The omnidirectional camera is placed 
on the median, whereas the four rectilinear cameras are at the sides 
of the road. A robot equipped with an omnidirectional camera is 
stored in a box in the median. Let us assume that an incident 
occurs in the zone indicated as (1) in fig. (a): while rectilinear 
cameras do not cover that area, the omnidirectional does, even if 
with a low-resolution image. Once the incident has been detected, 
the omnidirectional camera commands the rectilinear camera to 
move towards the incident area and, perhaps, to zoom on it (b). 
The same situation arises in the area (2). 

III. DIVA ARCHITECTURE

A. System overview 
We envision a system that covers the highways and 
intersections with many sensor clusters that 
communicate with each other. Each cluster would 
include microphones, rectilinear and omni-view CCD 
cameras, infrared cameras and real-time range 
sensing cameras. As discussed in the previous 
sections, fusion of information from the sensors 
within each cluster and between different clusters 
would allow for monitoring of the traffic, recognition 
of individual behaviors and group behaviors, incident 
detection and intervention management. In addition 
to triggering appropriate responses, results from such 
analysis would be stored in a database. This would 
allow statistical analysis of past events and addition 
of standing queries for behaviors that were not 
defined at the time the system was designed. 

Figure 2 (attached) shows the block diagram that 
illustrates the design of the system. It has five major 

parts: the DIVA sensor system, processing layers,
system states, database and the interface.

System states contain data produced by 
processing layers, such as segments, tracks, video 
frames, etc. Each layer takes input from sensors or 
from the system states (outputs from other layers). 
Each layer produces results, which are included in the 
system states.  

The core of this architecture is the DIVA sensor 
system. This architecture is very convenient for 
dealing with multiple sensors. Some layers would 
operate on results that come from only one sensor 
(segmentation for example), while others would be 
responsible for integrating information from multiple 
sensors (3D tracking).  

The primary-secondary (or “master-slave”) 
paradigm of DIVA system has been described above. 
Figure 2 reports a possible configuration in which all 
the omnidirectional cameras and one rectilinear PTZ 
camera are assumed primary views (note the letters 
on the lower right corner of the boxes). The data 
provided by these cameras is processed by the event
detection module of the Central Monitor (CM).  
Figure 3 (attached) shows the details of the CM.  The 
event detected is used as index to access to the Event-
Action Database (EAD).  Three examples of event 
based servoing using the UCSD testbed are presented 
in Figure 4. 

The system uses two camera clusters for these 
experiments.  In part (a), the primary camera has 
detected a “stalled vehicle” event on the road.  The 
secondary camera provides a close-up view of the 
passenger and the vehicle.  In part (b) the primary 
camera has detected a vehicle in the emergency lane.  
The secondary camera provides the close-up of the 
vehicle license plate.  Finally, in part (c), the primary 
camera has detected a stalled vehicle and the 
secondary camera provides a close-up of the traveler 
in need. 
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Figure 4:  Three examples of Event-based servoing:  a) 
stalled vehicle; b) view from emergency response; c) traveler in-

need

Both individual and group behaviors lend 
themselves to statistical analysis and classification 
techniques, due to the inherent unpredictability of 
driver behavior and the error associated with vision 
data.  Techniques such as HMM-based classification, 
Bayesian inference, and statistical clustering have 
worked well with other computer vision applications 
and will likely make good tools with which to 
analyze traffic scenes.  Statistical classifiers such as 
HMMs or Bayes nets can be trained to recognize 
specific behaviors, such as lane changing, or 
deviations from a one of several "standard" 
behaviors.  Clustering techniques could be used to 
analyze large amounts of data to determine use 
patterns of a section of freeway, and to recognize 
possible inefficiencies in traffic flow.  This database 
associates the corresponding action to the event and 
sent it to the action decision maker, which has the 
function to interpret the action and to redirect it either 
to the focus-of-attention module or to the driving 
directions module. The former commands to the 

secondary PTZ cameras to act in reaction of the 
event, the last sends via wireless network to the 
robots the information necessary to drive to the 
location computed by the action decision maker. The 
interface allows the users to add, modify and remove 
tuple in the  

IV. EXPERIMENTAL TEST BED AND RESULTS
The CVRR (Computer Vision and Robotics 

Research) Lab at UCSD has constructed its own test 
beds on campus as well as on Interstate 5, with the 
goal of providing high quality real-time video to the 
CVRR lab, as well as to the Internet (Figure 5, 
attached). This data has proved instrumental in 
providing the large quantities of traffic data from the 
camera sites necessary in the development and test of 
the algorithm described in this paper.  This test bed is 
currently operational, and consists of four PTZ 
cameras, one static ODVS, one infrared camera and 
one mobile ODVS camera.  These sensors are hooked 
up to a dedicated gigabit Ethernet network, which 
provides up to 16 full-rate, full-resolution video 
streams to the CVRR lab. This dedicated network is 
also connected to the Internet, allowing for public use 
of the traffic data and possibility of use the PTZ 
commands of the cameras.  

The modular design of this architecture allows 
for different algorithms for the same task to be tested 
without any difficulty in a plug-and-play manner. To 
systematically evaluate the goodness of our 
distributed architecture, we compare different 
methods of shadow detection and of multiple camera 
tracking.

The detailed comparison and evaluation of 
moving shadow detection algorithms has been 
reported in [7].  

For multiple camera tracking, we implement two 
novel approaches. The first approach is reported in 0 
and is based on graph matching. A model of the color 
of each detected vehicle is calculated. The system 
employs a color matching system that is a partial 
implementation of the Auto Color Matching System 
[3], in which the differences between illumination at 
cameras sites and between cameras are compensated. 
The mean and variance values of the R, G and B 
channels are used as feature model. This is used as 
signature to identify the object. A simple vehicle-
tracking scheme identifies identical vehicles from the 
same camera site (single camera tracking) by using 
this color model and the blob centroids from the 
segmentation module, to help solve the data 
association problem. Then, platoons of vehicles are 
detected. A platoon is a vehicle, or group of vehicles, 
traveling in close proximity 0. Vehicles that are 
entirely within a pre-defined region of the road scene 
are detected as platoon. Matching identical vehicles 

Primary view Secondary View 

Event: Incident detected             Action: zoom to the area of the  
incident

Event: Car stopped in a 
reserved area

Action: zoom to the license 
plate number 

Event:  Flat tire detected Action:  zoom to the tire. 

(a)

(b)

(c)
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in different camera sites can be a challenging 
problem, since visual information can drastically 
change between two views. In particular, in a freeway 
environment the difference between the aspect of the 
objects in the upstream view and in the downstream 
view is relevant, both in shape and in color. For this 
reason, this method uses a symbolic representation of 
the information. Taking the perspective distortion 
into account, the composition and relative distances 
inside a platoon is the same on the two views. Indeed, 
a labeled, undirected graph is created from this data.  

This matching system was tested with samples 
from data taken from two sites. The first data set, 
offering “easy” data, is from images taken from the 
UCSD test bed described above where platoons move 
slowly. The second data set consists of samples from 
a 20-minute segment of video taken with two freeway 
overpasses, located approximately 150m apart with 
non-overlapping views.  

The test bed data provides “easy” scenario in a 
highly controlled one-lane environment, avoiding or 
minimizing many common problems in vehicle 
tracking, such as vehicle changing lanes, vehicle 
occlusions (minimized by the high perspective view 
of the traffic), and high-speed vehicles passing one 
another. The freeway data is, on the other hand, 
extremely challenging. The freeway traffic exhibits 
high speed, traffic density and, in our case, an off-
ramp immediately after the second overpass. This 
tends to destabilize platoon behavior, as individual 
vehicles maneuver to position themselves in the right 
lane to take the off-ramp. Also, the perspectives at 
the two camera sites are significantly different, 
compared to the test-bed data.  
 A ground truth was acquired was acquired by 
manually identifying matching platoons in the two 
camera views in both data sets. This ground truth was 
used to calculate the matching accuracy as the 
percentage of true positive matches on the total of 
samples.  Results for the two data sets are reported in 
Table I (attached) 
 Unlike the first method, the second multiple 
camera tracking method explored assumes 
uncalibrated, overlapped cameras. This is more 
properly a camera handoff method. The system 
requires the manual (or semi-automatic) drawing of 
the field of view (FOV) overlap between the two (or 
more) cameras. The algorithm performs the following 
steps:
Step 1:  Find moving objects using background 
subtraction with the segmentation process above 
described 
Step 2:  Correlate objects with previous frames’ 
objects using Fieguth color calculation 0 and 
proximity to previous position.  

Step 3:  Check if any objects exist in the FOV area 
for first camera.  If they do, look for matching objects 
in the FOV area for second camera. Matching is 
based on Fieguth color calculation and relative area 
proximity.   
Step 4:  If matching objects are found mark both with 
the same ID number, choosing the ID number of the 
object that has existed for a longer duration.  This 
should assign the ID associated with the object in the 
originating camera to the object that has just appeared 
in the other camera. 
Step 5:  If a match is found in the area of overlap, 
mark it as such so that further attempts at matching 
this object will not be made. 
Step 6:  If an object leaves the area of overlap and has 
been matched, reset the matched flag so it can be 
matched again if it re-enters the area of overlap. 
Step 7:  Perform a background image update and 
repeat the process.

Even though the test bed data set is easier than 
the freeway environment, results (reported in Table 
II) are promising. The low performance of data set 2 
and 3 are due to the white large shuttle buses in the 
scene: the auto iris of the cameras adjusts to a smaller 
aperture, making the rest of the image appear darker. 
Since the segmentation is based on background 
subtraction, this sudden variation causes many 
problems at the segmentation level. 

V. CONCLUDING REMARKS
The main goal of the overall research is the 
realization of a powerful and integrated traffic-
incident detection, monitoring and recovery system 
based on distributed active multicamera video-based 
architecture.   Installing multiple sensors introduces 
several new issues into the system design, including 
handoff schemes for passing tracked objects between 
sensors and clusters, methods for determining the 
"best view" given the context of the traffic scene, and 
sensor fusion algorithms to best employ the strengths 
of a given sensor or sensor modality.  The limitation 
of the field of view of a single camera system or of a 
non-active multicamera system is overcome with an 
active system with event-driven servoing based on an 
event-action paradigm. The flexibility is assured by 
the event-action database (EAD) and its interface that 
allows for dynamic modification of the event-action 
tuples.  
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Figure 3. The Central Monitor of the DIVA system. The data provided by the primary cameras is processed by the event detection module. The 
event detected is used as index to access to the Event-Action Database (EAD). This database associates the corresponding action to the event and 
sent it to the action decision maker, which has the function to interpret the action and to redirect it either to the focus-of-attention module or to the 
driving directions module. The former commands to the secondary PTZ cameras to act in reaction of the event, the last sends via wireless 
network to the robots the information necessary to drive to the location computed by the action decision maker. 

Figure 5. The architecture of the test bed constructed in the UCSD campus. 
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TABLE I. TRACKING ACCURACY FOR THE PLATOON MULTIPLE CAMERA TRACKING ALGORITHM.
Data Set Nr. samples Mean platoon size # true positive 

matches
Match Accuracy 

%
Test bed 31 2.2 27 87% 
I-5 22 3.5 10 45% 
Totals 53 2.6 37 65% 

TABLE II. TRACKING ACCURACY FOR THE CAMERA HANDOFF ALGORITHM.
Data Set Nr. Samples # true positive 

matches
Match Accuracy 

%
Test bed 1 4 3 75% 
Test bed 2 18 10 56% 
Test bed 3 9 4 44% 
Test bed 4 12 10 83% 
Test bed 5 32 25 78% 
Totals 75 52 69% 


