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Abstract 
 
Intelligent environments provide challenging research 
problems for natural and efficient interfaces between 
humans and computers as well as between humans.  In 
this paper we present a multimodal sensory intelligent 
system testbed based on some general requirements for 
developing intelligent environments.  We also present  
rigorous experimental investigations on the processing 
and control modules for the active camera networks and 
the microphone array which are embedded in the 
intelligent room.  An integrated intelligent system is 
developed utilizing four basic modules for visual and 
audio processing.  The integrated system has the 
functionality of human tracking, active camera control, 
face recognition, and speaker recognition.  This system 
is demonstrated to be suitable for teleconferencing type 
of applications.   
 
Introduction 
 
The overall goal of intelligent environment research is to 
design and develop integrated sensor-based systems that 
allow natural and efficient mechanisms for human-
computer interactions in places where humans work, 
learn, and play.  Recent research on intelligent 
environments provides numerous new challenges in the 
fields of machine perception.  In computer vision [1], 
distinct progress in face recognition [2, 3], people 
tracking [4], and gesture recognition [5] has been made 
in the last decade.  For audio, much progress has been 
made in speaker and speech recognition [6] and source 
localization [7, 8].  Integrated sensory modalities of 
audio and video [9, 10, 11] are also been seriously 
considered recently.  One type of system that recognizes 
gesture and spoken words made possible a more natural 
"Put That There" type of interaction between humans 
and computers [12].   
 
Our team is pursuing investigations for systematic 
development of intelligent environments where networks 
of cameras and microphone arrays serve as the sources 
of multimodal sensory information [8]. The research 
challenges are to make computers intelligent so that they 
can:  

• Develop and maintain an awareness of their 3-D 
environment, 

• Acquire and respond to the voice and visual inputs 
from the users in a robust manner, 

• Adapt to the dynamic changes in their surroundings, 
and 

• Interact in a natural and flexible manner with the 
users. 

 

 
Figure 1  The AVIARY: Audio-Video Interactive 
Appliances, Rooms and sYstems.  This room is built for 
experimental development and evaluation of the 
intelligent room systems utilizing four rectilinear 
cameras, four omnidirectional cameras, and eight 
microphones which are embedded in the room.   

Based on this scenario, we built a multi-purpose 
intelligent room testbed called AVIARY, Audio-Video 
Interactive Appliances, Rooms and sYstems, as shown in 
Figure 1. Currently, a network of four omnidirectional 
cameras, four pan-tilt-zoom (PTZ) and four static 
rectilinear cameras, and eight microphones is installed in 
the room.  This room is used to develop and evaluate 
systems that capture, process, transmit, and display 
audio-visual information in an integrated manner.  The 
audio and video modalities provide valuable redundancy 
and complementary functionality.  These two modalities 
are also the most natural ways for humans to sense and 
interpret their environments, and interface systems of 
these two modalities can be very natural and effortless 
for the users.  Robustness to environment is another 
essential requirement since it is not practical to dictate to 
the user a specific rigid environment.  In addition, it is 
not unusual to expect the environment of the user to 
change, for example, lights getting turned on, or the 



  

room furniture getting reconfigured.  It is important that 
the systems still can carry out their task.  Therefore to 
meet these requirements, systems need to be equipped 
with the following capabilities:  

1. Self-Calibrating: Systems need to be able to self- 
calibrate with least technical expertise from the 
users when installed on different locations.   

2. Adaptive: Systems must have the ability to adapt.  
This provides the systems the ability to deal with 
changes that take place in the environment.   

3. Multimodal: Systems must be equipped with proper 
information processing capabilities.  This includes 
not only superior unimodal processing capability, 
but also well integrated multimodal sensory 
information processing capabilities.  This will result 
in more robust systems with broader range of 
functionality as well as unobtrusive interfaces to the 
users.   

4. Interactive: Systems must have the ability to direct 
their attention to “interesting” events and make 
appropriate reactions.  This can be achieved by 
utilizing a semantic event databases to guide human-
environment interactions.  Semantic event databases 
store abstracted past events of the intelligent 
environment with the embedded active sensory 
networks.  These events can be flexibly queried for 
decision making to inform humans or send 
commands to the active sensory networks and the 
processing algorithms.   

Note that handheld or head-mounted microphones are 
not appealing if mobility of the user is allowed.  Multiple 
microphones as in AVIARY setup offer an attractive 
alternative.  However, mobility comes with a price, and 
poses these challenges:  

• The received audio signal is distorted by the room 
acoustic properties, i.e., reverberations.  This not 
only degrades the quality of the audio signal, but 
also interferes any post-processing such as speech 
recognition.  Recovering the speech signal requires 
complicated room acoustics modeling and a difficult 
deconvolution problem.  More importantly, the 
room acoustical properties are dependent on the 
position and gesture of the users, so it can vary 
widely and hard to account for in advance.  Self-
calibration is essential for the system to function in 
such diverse environments.  Moreover, ambient 
noise is not stationary both spatially and temporally, 
hence requiring systems to be adaptable.   

• Vision system has to operate efficiently and robustly 
to conditions and events of the dynamic world.  
Novel approaches for real-time 3D modeling, 

visualization, and rendering are required.  The 
tracking of the speaker also has to be robust and 
fast.   

Basically the interactive systems developed in the 
AVIARY operate in two modes: (1) initialization mode 
and (2) active mode.  The system initialization refers to 
the phase when the system is learning its environment by 
carrying out self-calibration to prepare for its run-time 
functions.  This initialization phase contributes to system 
robustness by orienting system model to environmental 
variables.  During the active mode operations, the system 
implements useful functions such as acquiring and 
interpreting audio-visual signals thereby enabling 
effective interactions and providing a convenient user 
interface.   
 
Omnidirectional camera network and audio 
processing modules 
 
The omnidirectional vision sensor (ODVS) network 
embedded in the AVIARY has proven to be most useful 
for a number of tasks required in the system initialization 
and active mode operations.  We have developed a 
multiple-, wide-baseline stereo system for accurate 
geometric modeling of the room [13].  We have also 
developed a visual modeling system, where accurate 3-D 
range information and color information are 
simultaneously extracted [14].  The ODVS network also 
allows us to track multiple people [15] and to 
dynamically generate the views associated with the 
movement of the persons in the room [16, 17], as shown 
in Figure 2.  The audio information is acquired using an 
array of eight microphones and robust techniques for 
room acoustic modeling and speaker localization are 
being developed [8].   
 
Rectilinear camera network and multimodal 
person identification 
 
In the remainder of this paper, we will focus on the 
rectilinear camera network processing.  We present our 
research related to a number of important and unique 
features of the operations of the system.  Specifically, we 
will be describe the following four important modules of 
the system. 

1. A robust and efficient human tracking module 
which utilizes a four rectilinear camera network. 

2. An active camera control for capturing frontal view 
of a person moving in the room.  The module 
performs camera selection for best view and also 
automatic panning, tilting, and zooming for taking a 
close-up image.    



  

Figure 2  The ODVS tracker.  The upper left window shows the raw image from four ODVS cameras. Next to it on the 
right are the unwrapped images and histograms for object/person detection.  The bottom left window is the planar view of 
AVIARY room and the dynamic views of the detected object/person.   

3. A face recognition module that takes the close-up 
image to recognize the face in the image.    

4. A speaker recognition module which utilizes the 
microphone array and operates in parallel with the 
face recognition module for robust and active person 
identification.    

We now concentrate on describing the analysis of video 
information, which allows realization of the above 
multilevel, multimodal sensory information integration.   
 
Video Segmentation Module.  The segmentation is 
based on background subtraction.  First and second order 
statistics for background pixels are continuously 
updated.  Due to the use of a forgetting factor, 
background model is adaptable to slow changes.  
Foreground pixels are segmented using the Neyman-
Pearson test and grouped into blobs.  Blob centroids for 
all cameras are computed and serve as input to the 
tracking algorithm.  See [18] for details of the 
segmentation algorithm. 
 
The Multi-Camera 3-D Tracking Module.  The role of 
the tracker is to track multiple objects in 3D using 
segmentation results from different cameras with highly 

overlapping fields of view.  The cameras are calibrated 
using Tsai’s algorithm.  For details of the algorithm, see 
[19].  The tracker is capable of tracking multiple objects 
simultaneously.  It maintains a list of Kalman filters, one 
for each object in the scene.  The real-time nature of the 
system requires the tracker to produce updated and 
predicted positions of each object for the current frame.  
Also, the availability of up-to-date prediction allows us 
to feed back the information to the segmentation 
algorithm, which can increase its sensitivity in the areas 
where objects are expected to be present.   
 

 
Figure 3  The world coordinate system and the measured 
paths.   



  

We evaluated the accuracy of the tracking algorithm on 
real data.  Three different paths were measured and 
marked on the floor of a room as illustrated in Figure 3.  
First set of sequences was recorded with three different 
persons walking each of the paths.  For the second set, 
two people would walk at the same time on two different 
paths.   
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Figure 4  xy plots of tracks for two people in the scene.   

Figure 4 shows ideal and measured paths for one 
experiment with two people.  The tracks very accurately 
followed the ideal paths with maximum error in all 
experiments being around 200 mm and average error 
around 30 mm.  That is a very good accuracy, especially 
if it is taken into account that the error in these 
experiments is influenced by calibration and 
segmentation errors and the errors in measuring the path, 
drawing it on the floor and walking on it. 
 
Active Camera Control Module.  Four pan/tilt/zoom 
cameras (Canon VC-C3), controlled through RS-232 
links, are used in this system.  Since the cameras are 
calibrated, it is trivial to compute pan and tilt parameters 
that bring an object at a known location to the center of 
view.  Calibration of the zoom was done using the 
method described in [20], which enables us to find the 
zoom value that makes the size of the face in the image 
sufficient for recognition. 
 
The current use of the PTZ capabilities of cameras is for 
taking snapshots of objects and of people’s faces for face 
recognition and archiving.  We also plan to use cameras 
for focusing of attention of the video-processing part of 
the system to “interesting” objects and locations. As a 
new track appears in the room, it is classified as object or 
person based on its shape and size.  If person is detected, 
the location of the head is estimated to be at the top fifth 
of the height.  Best view camera is chosen to be the one 
for which the negative inner product of the viewing 
direction and average person’s velocity in the last few 
frames is the largest.  In other words, the camera that the 
person was walking toward in the recent frames is 
chosen to be the one that the person is most likely facing, 

as shown in Figure 5.  If the track is classified as object, 
the snapshot of the whole object is taken and stored. 
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Figure 5  Best view camera selection for taking face 
snapshots. 

 
Joint visual-acoustic person recognition modules 
 
Integration of audio and video modalities increases 
robustness of person recognition through the redundancy 
of sensor information and the complementary 
functionality.    
 
Face Recognition Module.  Face recognition is a visual 
biometric modality.  Eigenface recognition algorithm 
[21] is currently utilized in the face recognition module.   
Human face is extracted from the snapshot image of 
camera network by skin color detection [22].   Face 
images of known people on certain facing angles are 
stored into the training face database.   The training faces 
are then used to span the eigenface space by the 
eigenvectors of the correlation matrix of the training face 
vectors.  This is done on system initialization.   During 
active mode, the test face image is projected into the 
eigenface space and compared to the training faces in 
terms of distances in the eigenface space.   The test face 
is then classified as a certain person of the minimum 
distance or score if the minimum distance is smaller then 
a recognition bound.  The recognition bound is estimated 
based on Bayesian rules to compromise between the 
probabilities of false acceptance and false rejection.  
False acceptance  happens when the recognition bound 
for the class is too big that an incorrect person is 
included into the class, and false rejection stands for the 
converse case that a correct person is rejected.  Other 
face recognition algorithms like independent component 
analysis also apply, and are reported to have better 
recognition performances [2, 23, 24].   
 



  

Figure 6  Integrated performance: Two people having a conversation in a room.  Upper left window shows the views from 
four cameras and the crosshairs correspond to the 3D tracks projected back to the image planes. Upper right window shows 
the projections of the 3D tracks of the participants onto the floor plane.  Bottom window is the current speaker recognized 
by their voice, and the snapshot of their faces is displayed with the identity from joint audio-video recognition.  

Speaker Recognition module.   Speaker recognition is 
an acoustic biometric modality that uses voice patterns to 
recognize the speaker.  A text independent speaker 
identification module is used here.  It takes the signal 
from microphone array and operates in parallel with the 
modules related to the rectilinear camera network.  It has 
two modes of operation.  For the first mode, when the 
camera network takes snapshot of a person, the speech 
sample is also taken from that person.  The recognition 
results from face recognition and speaker recognition 
modules are then fused to yield the final recognition 
result.  This fused result is then stored along with the 
tracking information of that person.  For the second mode, 
when people in AVIARY room are speaking, the speaker 
recognition module detects speech and takes the speech 
sample to identify the speaker.  The speaker recognition 
module we used here is VVDetective speaker recognition 
engine from the IBM ViaVoice SDK for Windows.    
 
Joint Visual-Acoustic Person Recognition.  Here the 
results of face and speaker recognition modules are fused 
together for robust person identification.  Since ViaVoice 
does not provide access to confidence measures for 

recognition results, we are not able to make optimal 
decisions in Bayesian sense. Therefore, we perform the 
following procedure. Each module gives output only if 
there is reasonable confidence associated with it.  If only 
one module outputs a valid result, then it is taken as the 
final decision.  If both modules output results, and the two 
results are the same, then obviously such result is 
accepted.  If the two results are different, the output from 
face recognition is accepted if confidence is above 
predetermined high value, otherwise the output from 
speaker recognition is accepted.   
  
The integrated system of the above modules enables a 
teleconference type of operation.  In the demonstrative 
experiment, two conduct a conversation in a room.   
When one person enters the room, the camera network 
takes a snapshot of the person, and the person speaks a 
sentence.  The snapshot and speech sample are used to 
identify the person by the face recognition and speaker 
recognition modules, respectively.  Then, the snapshot 
and the joint audio-video recognition result are stored 
with the track of that person.   When the two people walk 
to their seats and sit down, the system identifies the 



  

current speaker by the speech when the dialog is on 
going.   The snapshot and identity of the current speaker 
are then displayed.  Example images of the system 
operation are given in Figure 6.  The system interface 
shows the video from the four cameras with projections of 
the 3D tracks to the image planes shown as colored 
crosshairs.  Also, a floorplan of the room is shown with 
projections of tracks on the floor plane.  If user clicks on 
one of the tracks in this view, the snapshot of the 
face/object is shown with the recognition result. Also, at 
the bottom of the screen in CurrentSpeaker window, the 
face and name of the current speaker are shown.   
 
Concluding Remarks 
 
Multimodal sensory intelligent environments benefits the 
users with more natural and efficient mechanisms of 
interactions, even when they are not sharing the same 
physical space.  The overall system specification and 
general framework discussed in this paper convey many 
possible research challenges.  The intelligent system 
developed in this paper with its four functional blocks of 
human tracking, active camera control, face recognition, 
and speaker recognition is an experimental investigation 
toward such intelligent environments.  The developed 
system is demonstrated to be suitable for remote 
conferencing type of applications.   
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