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Source Localization in Reverberant Environments:

Part I - Modeling
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Abstract

Source localization using microphone arrays has for some time been an active and challenging research area. The

main obstacle in designing robust practical systems is the e�ects of room reverberation. This paper, along with a

companion, analyzes the in
uence of reverberation. In this paper, a new statistical model is developed that explains the

e�ects of reverberation. The model is based on the theory of statistical room acoustics and is a generalization of the

Ricean model used to model channels in digital communication. The properties of the statistical model is evaluated with

both simulations using the image method, and with real data measurements. The agreements are quite good lending

support to the model. The model is further validated in the companion paper where it is used to understand performance

limits of source localization estimation accuracy in reverberant environments, and to understand the performance of

source localization algorithms.

I. Introduction

Development of microphone array signal processing systems has been an active area of research. Microphone

arrays have shown promise in acoustical source localization and speech acquisition. An example of this is
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interference suppression using beamforming. By steering the microphone array in certain look directions,

interferers can be suppressed. However, the success of beamforming for interference suppression hinges on the

knowledge of the location of the desired speaker. Knowledge about the location of the source is also crucial

for automatic speaker tracking in video-conferencing [12], [13].

In the literature, several approaches have appeared to estimate the location of a speaker using microphone

arrays. Among existing methods, those which are based on time-delay estimation (TDE) have gained a lot

of attention, see for example [3], [2], [7], [10]. In this context, the received signals from a pair of microphones

are modeled as

x1(t) = s(t) + n1(t)

x2(t) = s(t� �0) + n2(t);

(1)

where xi(t) (i = 1; 2) is the output signal of the ith receiver, s(t) is the unknown source signal, ni(t) is an

additive noise term assumed uncorrelated with s(t), and �0 is the unknown time-delay. Assuming there are

several such microphone pairs distributed over the spatial region, the location of the source can be estimated

from triangulation of the estimated time-delays.

Considering the problem of acoustical source localization in, for example, an o�ce environment, the single-

path propagation model (1) is not realistic. In an o�ce environment, the accuracy of the estimated time-delay

is typically not limited by additive measurement noise as in (1). Instead, the accuracy is limited by room

reverberation, and much less is known about TDE in reverberant environments. In a reverberant environment,

the measured microphone signals could be modeled as

x1(t) =

Z
1

�1

h1(t� �)s(�)d� + n1(t)

x2(t) =

Z
1

�1

h2(t� �)s(�)d� + n2(t);

(2)

where hi(t) represents the impulse response of the acoustical transfer function from the source to the ith

microphone. Now the time-delay �0 is \hidden" in the impulse responses h1(t) and h2(t). See for example [6,

Chapter 5] for a thorough treatment of the reverberation phenomenon.

The empirical experience is that once the level of room reverberation rises above minimal levels, most
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methods for TDE begin to exhibit dramatic performance degradations and become quite unreliable. The

purpose of the present paper is to propose a statistical model of the impulse responses hi(t) which can serve

as the basis for understanding accuracy limits of source localization in reverberant environments and for the

development of robust algorithms. The model is derived using well-established theory of di�use sound �elds,

and is inspired by similar concerns in digital mobile communication where so-called fading is a well-researched

problem (see for example [8]). The introduced reverberation model is in fact quite similar to \Ricean fading".

However, because of the broadband nature of the signal, the signal is divided into subbands and model is

suitably adapted for each band. In a companion paper [4], the new model is applied to derive relevant Cram�er-

Rao lower bounds to understand localization accuracy limits. In addition, the accuracy of common time-delay

estimators are analyzed, and the probability of an anomalous estimate is derived.

II. Elements of the New Model

In this section we will analyze the elements of the model that will be used to model the e�ects of rever-

beration. The model is built on some important results in room acoustics, and so the relevant results are

reviewed and summarized in this context. We will high-light crucial assumptions, and make a couple of novel

approximations to arrive at a simple but useful model.

A. General Assumptions

For simplicity, consider the case with two microphones. Using matrix notation, we can compactly write (2)

as

x(t) =

Z
1

�1

h(t� �)s(�)d�+ n(t); (3)

where x(t) = [x1(t) x2(t)]
T , h(t) = [h1(t) h2(t)]

T and n(t) = [n1(t) n2(t)]
T . The impulse response h(t) is

assumed to represent a linear and time-invariant (LTI) system, as indicated by the convolution representation

(3). Considering common models of room transfer functions, such as wave-equation based modeling [6], the

linearity assumption does not appear to be restrictive. Assuming time-invariance simply means that the

positions of the microphones and the source are assumed stationary.
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Since the main goal is to provide understanding of the reverberation phenomenon, we will neglect n(t) in

the analysis. The dominating noise-sources in a typical o�ce environment are:

1. Additive measurement noise due to the measuring equipment.

2. Interferers such as air-conditioning equipment and/or other speakers.

In a high-quality measurement equipment, the additive measurement noise is often negligible compared to the

level of reverberation. Furthermore, most of the noise from an air-conditioning device in general has most of

its power at frequencies below the frequencies where speech is dominant (i.e. 300-3500 Hz). Hence, neglecting

n(t) is not too restrictive, assuming that other speakers are not present.

Assume next that the source is located at rs, and that the microphones are located at rm1
and rm2

,

respectively. The distance between the microphones is denoted as d = krm1
� rm2

k. Our next assumption is

the key assumption. We will in the rest of the paper assume that h(t) can be written as:

h(t) = hd(t) + hr(t): (4)

Here, subscript (�)d denotes the direct-path propagation, and subscript (�)r denotes the reverberant part. The

direct-path impulse response hd(t) contains the impulse response corresponding to free-space propagation of

an omni-directional acoustical point source. We thus assume the following form of hd(t):

hd(t) =

2
664 1

�(t � �0)

3
775�(r) (5)

where �(�) denotes Dirac's delta function and �0 denotes the di�erence in propagation times

�0 =
1

c
(krs � rm1

k � krs � rm2
k) : (6)

Here, the speed of sound propagation is denoted as c (generally speci�ed as c = 344 m/s at 21� C). Furthermore,

it is assumed that

�(r) '

r
1

4�r2
; (7)

where r is the distance from the source to the point in-between the two microphones, i.e.

r
4
=





rs � 1

2
(rm1

+ rm2
)





 : (8)
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Here we used the well-known fact that the power from an omni-directional point source decays as 1=4�r2.

The above model of hd(t) is a simpli�cation of the actual scenario since we assume that both microphones

receive equal amount of power from the direct-path propagation. Hence, we can only claim that the assumed

form of hd(t) is accurate in cases where d� krs � rm1
k, krs � rm2

k.

Next we proceed to establish the properties of hr(t). We will assume that hr(t) is due to di�use sound,

i.e. the sound energy has no direction associated with it and is received uniformly from all directions. In the

following section we will review the properties of di�use sound, and at the same time establish the statistical

properties of hr(t).

Remark 1: The assumption that h(t) can be split into a direct-path propagation hd(t), and into a reverber-

ant part hr(t) is not entirely new. In a recent paper by Radlovi�c et al. [9], a similar model was successfully

used to investigate the robustness of equalization techniques in a reverberant environment. In [9], however,

only point-to-point equalization was considered, and correlation between h1(t) and h2(t) was not taken into

account.

B. Properties of hr(t)

The sound pressure at the microphone can be considered as being built up of a direct-path, plus several

plane waves due to multiple re
ections of the original sound from the walls. These re
ections travel in di�erent

directions and encounter the walls at di�erent angles of incidence. In the time domain, these re
ections are

perceived as delayed echoes with more or less random amplitudes.

The large number of echoes implies that the measured sound pressure can be quite di�erent for di�erent

microphone locations. Studying an empty rectangular room, h(t) can be computed by solving the wave

equation, i.e. the theory of modal analysis, see for example [6, Chapter 3]. This kind of \deterministic"

modeling was recently applied for equalization of room transfer functions, see [5].

At higher frequencies, the complexity of modal analysis however increases to a point where exact mathe-

matical analysis is no longer feasible. This \breakdown" in modal analysis is due to the large number of modes

being excited by the source. A suitable tool for analyzing the behavior of room transfer functions for high
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frequencies is to apply the theory of random (or di�use) sound �elds [6, Chapter 5]. The theory of statistical

room acoustics closely describes the actual behavior if the following conditions are ful�lled [11]:

A1: The dimensions of the room are large relative to the wavelength of s(t). For the frequencies of interest

(for speech we are mainly interested in the band 300-3500 Hz), this condition is usually satis�ed.

A2: The average spacing of the resonance frequencies of the room must be smaller than one third of their

bandwidth. In a room with volume V (in m3), and reverberation time1 T60 (in seconds), this condition is

ful�lled for all frequencies that exceed the \Schroeder large room frequency":

fS = 2000

r
T60
V

: (9)

For instance, in a \normal" o�ce with reverberation time of 1s and volume 100m3, the statistical theory would

be relevant for all frequencies above about 200 Hz, i.e. for all frequencies where speech energy is present!

A3: Both the source and the microphones are located in the interior of the room, at least a half-wavelength

away from the walls.

Under the above conditions, the transfer function between the source and the microphone (excluding the

direct-path) can accurately be modeled as a random function.

De�ne now the frequency response of hr(t) as

Hr(!) =

Z
1

0

hr(t)e
�j!tdt: (10)

It is important to note that the randomness of the transfer function Hr(!) is not related to absolute time.

That is, given a �xed source location and a �xed microphone location, Hr(!) will remain constant unless the

room con�guration or the positions of the microphones or the source, somehow are altered. To emphasize

this fact, we de�ne the vector � = [rTs r
T
m1

rTm2
]T , and denote the random impulse response and its frequency

response accordingly: hr(t;�) $ Hr(!;�). Conditioned on a �xed � = ~�, hr(t;� = ~�) is hence assumed to

be a deterministic function.

1The reverberation time T60 is de�ned as the length of time for the sound intensity level in a room to decrease by 60 dB after

the sound source is shut o�.
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Consider the kth component of Hr(!;�), and write it as

Hrk(!;�) = Hr
rk
(!;�) + jHi

rk
(!;�): (11)

Here Hr
rk
(!;�) and Hi

rk
(!;�) are the real and imaginary parts of Hrk(!;�), respectively. We next cite a

couple of interesting result from [11] (assuming A1-A3 to be ful�lled):

E� fHr(!;�)g = 0 (12)

'rr(�!)
4
=

E�
�
Hr
rk
(!;�)Hr

rk
(! +�!;�)

	
q
E�

�
(Hr

rk
(!;�))2

	
E�

�
(Hr

rk
(! +�!;�))2

	
=

1

1 +
�
�! T60

13:8

�2 ; (13)

'ii(�!)
4
=

E�
�
Hi
rk
(!;�)Hi

rk
(! +�!;�)

	
q
E�

�
(Hi

rk
(!;�))2

	
E�

�
(Hi

rk
(! +�!;�))2

	
=

1

1 +
�
�! T60

13:8

�2 ; (14)

'ri(�!)
4
=

E�
�
Hr
rk
(!;�)Hi

rk
(! +�!;�)

	
q
E�

�
(Hr

rk
(!;�))2

	
E�

�
(Hi

rk
(! +�!;�))2

	
=

�! T60
13:8

1 +
�
�! T60

13:8

�2 : (15)

It is important to note that the expectation operator should be interpreted as the ensemble average over all

possible values of � satisfying A3, which we indicated with the notation E�f�g.

At least two important conclusions can be drawn from equations (12)-(15):

1. For �! = 0, the real and imaginary parts of Hrk(!;�) are uncorrelated.

2. For �! \su�ciently large", Hrk(!;�) and Hrk(! +�!;�) are uncorrelated.

To give a more precise meaning of \�! su�ciently large", we de�ne a \coherence bandwidth" �(T60) as

�(T60)
4
=

1

2�

Z
1

�1

'rr(�!)d(�!) '
7

T60
: (16)

The chosen de�nition of �(T60) is rather arbitrary. An alternative de�nition is

1

1 +
�
2��(T60)

T60
13:8

�2 =
1

2
) �(T60) '

2

T60
: (17)

Consequently, Hrk(!1;�) and Hrk(!2;�) can be considered approximately uncorrelated if j!1 � !2j � �(T60).
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Before we conclude our review of the statistical properties of Hr(!;�), there are two more important

questions that should be addressed. The �rst unresolved issue is the amount of mutual spatial correlation

between Hr1(!;�) and Hr2(! +�!;�), and the second issue is how to �nd the variance of Hr(!;�).

The most di�cult issue is to analyze the spatial correlation between Hr1(!;�) and Hr2(!+�!;�). To the

best of the authors knowledge, no general results are available in the literature. However, if it is assumed that

the sound source consists of a single sinusoid with angular frequency !, it can been shown that [6, Chapter 8]

E�fx1(t)x2(t)gq
E�fx

2
1(t)gE�fx

2
2(t)g

=
sin
�
!d
c

�
!d
c

; (18)

which holds true if hr(t;�) corresponds to di�use sound, and if hd(t) is negligible. If the source energy is

not concentrated to a single frequency, ! in (18) can be replaced with the mean of the highest and lowest

frequencies of the source signal. Expression (18) is only approximately true in this case. Similarly to the

de�nition of the coherence bandwidth �(T60) we can de�ne a spatial correlation distance as

Z
1

�1

sin
�
!d
c

�
!d
c

d(d) =
c

!=2�
: (19)

Hence, we consider Hr1(!;�) and Hr2(!;�) approximately uncorrelated if the spatial separation d is larger

than 2�c=!. For speech signals, ! ' �(3500 � 300), which implies that the spatial correlation is negligible if

d > 0:2m.

The �nal issue to resolve, is how to compute the variance of the random variable Hrk(!;�). This problem

has however previously been studied in the literature, see for example [6, Chapter 5], where we �nd that

q2
4
= E� fHrk(!;�)(Hrk(!;�))

�g =
4�2

A(1� �2)
; (20)

where � (0 � � � 1) is the re
ection coe�cient, A denotes the total wall area of the room, and (�)� denotes

complex conjugate.

Before we conclude the section, we would like to discuss the statistical distribution of Hr(!;�). It is natural

to assume that Hr(!;�) has a complex-valued circularly symmetric (i.e. 'ri(0) = 0) Gaussian distribution,

denoted as

Hr(!;�) 2 N
�
0; q2I2

�
; (21)
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where Im denotes the m�m identity matrix. Here, the spatial correlation has been neglected in accordance

with the above discussion. At least for large values of T60, the assumption on Gaussianity can be motivated

from the central limit theorem, simply due to the superposition of a large number of echoes with random

phases and amplitudes. See also the discussion in [6, Chapter 3], where it is shown that the magnitude of

the sound pressure, assuming di�use sound propagation and a single frequency excitation, has a Rayleigh

distribution, which gives support to the assumed Gaussianity of Hr(!;�).

III. The New Model

A. Modeling

We are now in position to propose the new reverberation model. Assuming that we have recorded the signal

x(t) for 0 � t � T , the frequency domain representation of x(t) reads as

X(!) =

Z T

0

x(t)e�j!tdt ' H(!)S(!)

= (Hd(!; �0) +Hr(!;�))S(!);

(22)

where

Hd(!; �0) =

2
664 1

e�j!�0

3
775�(r): (23)

Here it was assumed that the integration time T is large so that windowing distortions of the Fourier transform

are negligible. To simplify the notation, we next scale the measured output by a factor 1=�(r), and de�ne the

following quantities and their respective Fourier transforms:

a(t)
4
=

1

�(r)
hd(t)$ A(!; �0) (24)

r(t;�)
4
=

1

�(r)
hr(t;�)$ R(!;�) 2 N

�
0; �2I2

�
; (25)

where

�2
4
= q2=�(r)2: (26)

Assume next that the source signal s(t) is band-limited, i.e. its power is zero outside the interval [fl; fu]

Hz. The signal bandwidth is then B
4
= fu � fl Hz. We also assume that fl is larger than the Schroeder large
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room frequency fS, de�ned in (9). Suppose next that the microphone output x(t) is sampled with sampling

frequency FsHz (assuming that fu � Fs=2), to produce the sequence x(nTs); n = 0; 1; � � � ; N � 1, where

Ts = 1=Fs and N = roundfTFsg. For sampled data, the Fourier transform (22) is usually computed using

the Discrete Fourier Transform (DFT). Hence, up to within a scaling,

X(!k) '
N�1X
n=0

x(nTs)e
�j!knTs : (27)

The DFT operation produces the following sampling of the frequency axis:

!k =
2�Fsk

N
; k = 0; 1; � � � ; N � 1: (28)

To �nd a suitable model, we consider the following two cases:

M1: Suppose that �(T60) � Fs=N . In this case, we �nd the following model (for simplicity, only frequencies

in the interval [0; Fs=2] are included):

X(!k) = (A(!k; �0) +R(!k;�))S(!k); k = kl; � � � ; ku; (29)

where

kl = round

�
Nfl
Fs

�
(30)

ku = round

�
Nfu
Fs

�
; (31)

and roundf�grounds towards the nearest integer value. Hence, if the coherence bandwidth is smaller than

the frequency sampling induced by the DFT, the sequence fR(!k;�)g
ku
k=kl

consists of uncorrelated Gaussian

random vectors.

M2: Suppose next that �(T60) > Fs=N . This case is somewhat more di�cult to handle. Due to the large

(relative the DFT sampling of the frequency axis) coherence bandwidth, the correlation between adjacent

values of R(!k;�) is not negligible. In theory it is of course possible to include this correlation in a parametric

manner (see for example Remark 2 below). For now, we however avoid such precise modeling, and conclude

that fR(!k;�)g
ku
k=kl

is a sequence of correlated Gaussian random vectors.
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Remark 2: An interesting possibility to incorporate the frequency correlation ofR(!k;�) could be as follows.

Suppose that R(!k;�) is generated from an Auto-Regressive (AR) random process:

R(!k;�) = �R(!k�1;�) +w(k); (32)

where w(k) is a white Gaussian noise sequence. The real-valued scalar � should then be chosen such that

the frequency correlation of R(!k;�) approximately satis�es (12)-(15). Since this approach complicates the

investigation, analysis of the model (32) is deferred to future research.

B. Discussion

Although analysis of reverberation at �rst seems di�cult, we have demonstrated that it is possible to derive

a fairly simple model for explaining the e�ects of reverberation. The crucial assumptions are

1. The reverberant part of the impulse response r(t;�) can be considered equivalent with di�use sound prop-

agation.

2. By considering the coherence bandwidth �(T60), a sequence fR(!k;�)g
ku
k=kl

of random vectors can be

constructed. The correlation function of the random vectors fR(!k;�)g
ku
k=kl

then depends on the coherence

bandwidth �(T60).

One conclusion of the above discussion is that the e�ects of reverberation is similar to that of additive noise.

The most important distinction is that the variance of the \noise term" R(!k;�)S(!k) is proportional to the

power of the input signal. From an engineering standpoint, this means that unlike in the additive noise case,

simply increasing the signal level will not be able to alleviate the problem.

Remark 3: Consider next an extension to a microphone array. Assume that the considered array of mi-

crophones consists of a uniform linear array with M microphones. Assuming that the spacing between the
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microphones equals d, and that the source is su�ciently far away, it follows that

a(t) =

2
66666666664

1

�(t � �0)

...

�(t� (M � 1))�0

3
77777777775
: (33)

De�nition (33) relies on the assumption that the sound wave transmitted from the source is plane. For

M > 2 the validity of that assumption is questionable in a room environment, simply due to geometrical

considerations.

Remark 4: Attempting to localize human speakers, the above discussion should not be taken too literally.

This since it cannot be expected that the position of a human speaker is completely stationary. As he/she

is speaking, the head moves, which a�ects H(!). Our empirical experience is that these movements actually

makes it easier to localize the speaker, compared to a stationary loudspeaker. A potential explanation is

that the head-movements ensures that the recorded microphone signal consists of several realizations of the

reverberant transfer function R(!;�). Hence, there is a chance of decreasing the e�ects of reverberation by

segmenting the available data and performing averaging over di�erent realizations of the involved estimates of

the auto-and cross-spectra (assuming a frequency-domain based approach for estimation of the time-delay).

Furthermore, we must keep in mind that sound originating from a human speaker tends to be more directional

than sound from the assumed omni-directional point source.

C. Similarity with Ricean Fading in Digital Mobile Communication

It is interesting to note that the introduced model for the transfer function H(!) essentially corresponds

to a so-called \frequency selective fading" model, commonly used for modeling multi-path propagation in

mobile communication. If we assume that R(!;�) is Gaussian, the reverberation model is equivalent with

\Ricean fading". Note also that the reverberation model corresponds to Rayleigh fading when the direct-

path propagation A(!; �0) is absent. See for example [8] for a discussion on fading in the context of digital

mobile communication. Here we just point out that Ricean fading usually occurs when the direct line of
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sight communication is distorted with re
ections from a large number of scatterers. Note that the factor

�(r) then corresponds to the \propagation path-loss". Furthermore, expressions (12)-(15) also appears in

statistical models of fading. Then the quantity T60=13:8 usually goes under the name \delay-spread". Note,

�nally, that the analogy with fading in mobile digital communication was the reason to introduce the term

\coherence bandwidth" for �(T60). This since the coherence bandwidth is a well-established quantity in the

digital communication community.

IV. Experimental Results

Synthetic Data

The purpose of the �rst example is to investigate to which extent the assumption of di�use sound is

valid. In particular, we will compare the theoretical expressions (12)-(15) with the outcome of a Monte-Carlo

simulation. For the simulations, we consider a rectangular room with plane re
ective surfaces. Each boundary

is characterized by its re
ection coe�cient �; 0 � � � 1, which is assumed to be identical for all walls. The

dimensions of the room along the x; y; and z-axes are denoted Lx, Ly and Lz, respectively. In our simulations

we have studied a scenario where Lx = 10, Ly = 6:6, and Lz = 3 (all measures in meters). Furthermore,

we assume that there is an omni-directional acoustical point source present in the interior of the room. The

radiated signal is measured by omni-directional microphones, which are located in the interior of the room

(compare with Assumption A3). Except for the source and the microphones, the room is assumed to be

empty.

In the paper, we have relied on the assumption that the di�use part of the room transfer function is a

random function, where the randomness is with respect to the positions of the source and the microphone.

To generate independent realizations of the room transfer function, we apply the following procedure:

1. De�ne

~rm1
=

�
d=2 0 0

�T
(34)

~rm2
=

�
�d=2 0 0

�T
: (35)
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The source is assumed to be located at ~rs, such that the distance from the source to the point in between the

microphones is r = k~rsk. The true time-delay is then obtained as

�0 =
1

c
(k~rs � ~rm1

k � k~rs � ~rm2
k) : (36)

This con�guration of ~rs, ~rm1
, and ~rm2

, is �xed for each Monte-Carlo run.

2. For each Monte-Carlo run, generate a random translation y and a 3 � 3 random rotation matrix G (i.e.

GTG = I3), and let

rs = y+G~rs (37)

rm1
= y+G~rm1

(38)

rm2
= y+G~rm2

: (39)

Since r and �0 are invariant to the above translation and rotation of the coordinate system, the direct-path

transfer function Hd(!) is also invariant. Here the random translation y is uniformly distributed in the room

volume, and the rotation angles used to de�ne G are uniformly distributed in the interval [��; �].

3. If either rs, rm1
, or rm2

is located outside the room, return to 2). Else, compute H(!) using rs, rm1
, and

rm2
, as input data.

4. For each Monte-Carlo run, generate a new realization of the source signal s(t).

In this manner, it is possible to compute independent realizations of R(!;�), without a�ecting the direct-path

transmission2. To generate sampled versions of the acoustical impulse response h(t), we apply the image-

method [1]. In all simulations the sampling frequency is chosen as Fs = 10 kHz. The impulse response h(t)

theoretically extends to in�nity. The simulated h(t) is however truncated to 6000 (0.6 s) samples. For each

realization of h(nTs) we compute the frequency response function H(!) at '2500 equidistant frequencies in

the interval [300; 5000]Hz. We next compute the reverberant part of the frequency response by subtracting

2The same procedure will be applied in [4], where it is more crucial to keep A(!; �0) �xed while generating independent

realizations of R(!;�). This since the accuracy of TDE is studied in [4].
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the direct-path transfer function

Hr(!k;�m) = H(!k)�Hd(!k; �0): (40)

Here we introduced the notation (�m) to indicate that Hr(!k;�m) is conditioned on the mth realization of the

random vector �m. For a particular outcome of �m, we can now, for example, estimate the auto-correlation

function (denoted as upper-case C(� ;�m)) of the real part of Hr1(!k;�m) as

Ĉr1r1(l;�m) =
1

L

K�lX
k=1

Hr
r1(!k;�m)H

r
r1(!k+l;�m); (41)

and similarly for the normalized cross-correlation (denoted as lower-case c(� ;�m)) between the real and imag-

inary parts of Hr1(!k;�m):

ĉr1i1(l;�m)

=
1

L

PK�l
k=1 H

r
r1(!k;�m)H

i
r1(!k+l;�m)q

1

L

PK
k=1(H

r
r1(!k;�m))

2 1

L

PK
k=1(H

i
r1(!k;�m))

2

;
(42)

where K denotes the number of frequency points in the interval [300; 5000]Hz. The �nal estimate of the

involved correlation function is then de�ned as

Ĉr1r1(l)
4
=

1

W

WX
m=1

Ĉr1r1(l;�m) (43)

where W denotes the number of independent realizations of H(!). The corresponding normalized correlation

function ĉr1r1(l) is similarly de�ned.

In order to apply the image method, we �rst need to compute the value of the re
ection coe�cient � which

results in the given reverberation time. For a given value of T60, the re
ection coe�cient � is here computed

from Eyring's formula[6]:

� = exp

(
�

13:82

( 1

Lx
+ 1

Ly
+ 1

Lz
)cT60

)
: (44)

In Fig.1 the estimated values of Ĉr1r1(l) and ĉr1i1(l) are illustrated for the case T60 = 0:5s, which according to

(44) corresponds to � = 0:87. In Fig. 1, also the theoretical expressions for the involved correlation functions
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are included, i.e.

Cr1r1(�!) =
q2=2

1 +
�
�! T60

13:8

�2 (45)

cr1i1(�!) =
�! T60

13:8

1 +
�
�! T60

13:8

�2 : (46)

The results in Fig.1 indicate a surprisingly good match between the theoretical and estimated correlation

functions. It is especially important to observe the correlation values at �! = �(T60) = 7=T60. Both Ĉr1i1

and ĉr1i1 are close to zero for �! > �(T60), which illustrates the idea behind the de�nition of the coherence

bandwidth. Note also the almost perfect agreement between q2=2 and the empirical variance of Hr
r (!) and

Hi
r(!).

Next we turn our attention to the correlation between Hr1(!) and Hr2(!+�!). In the analysis in Section

II-B, we noted that few results are available on the theoretical spatial correlation function. It is hence of

interest to investigate ĉr1r2 and ĉr1i2 by means of Monte-Carlo simulations. In Fig. 2, the outcome of ĉr1r2 and

ĉr1i2 is illustrated for two di�erent microphone separations (d = 1m and d = 0:1m, respectively). We note

that the spatial correlation increases as d decreases, as expected. However, even if the microphones are as

close as d = 0:1m, the normalized spatial correlation does not exceed 0.2 for �! > �(T60). The main modeling

error seems to be that ĉr1r2(0) ' 0:3, when d = 0:1m. However, if the distance is increased to d = 0:25m,

the value of ĉr1r2(0) drops to approximately 0:15. Hence, also the assumption that the spatial correlation is

negligible seems quite applicable, at least for microphone separations larger than ' 0:25m. This observation

agrees well with the theoretical investigation in Section II-B.

In Fig. 3, we study the spatial correlation in a di�erent manner. In Fig. 3, we plot ĉr1r2(0) as a function of

d. As expected, the spatial correlation decreases as a function of d.

Real Data

Our �nal example deals with real data. At our disposal, we had an o�ce with dimensions Lx = 6:6m,

Ly = 3:3m, and Lz = 2:9m. The room was empty, except for a table in the middle of the room. We placed a

microphone at location rm = [0:1 1:9 1:5]T . The position of the microphone then actually violates assumption
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Fig. 1. Synthetic Data: Estimated correlation functions of Hr1
(!;�). Here r = 3m, the number of Monte-Carlo runs

equals W = 250, and T60 = 0:5s. Vertical dash-dotted line indicates the coherence bandwidth �(T60) = 7=T60, and

the solid line illustrates the theoretical correlation functions.

A3, since the microphone is not located in the interior of the room.

We next measured the transfer function from various source positions to the �xed microphone3. See Fig. 4

for an illustration of the various source positions. The locations missing in Fig. 4 were due to the table present

in the room. For all source positions, the loudspeaker was located at a �xed height of 1:1m. The transfer

functions were estimated using a chirp-signal as input (100�500Hz). Note, since we study low frequencies, we

study the frequency band where the assumption of di�use sound is the least appropriate due to the Schroeder

3In these recordings we used a \Radio Shack omni-directional loud-speaker", Cat.No. 40.1352.
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Fig. 2. Synthetic Data: Spatial correlation for two di�erent values of the microphone separation. Here r = 3m, the

number of Monte-Carlo runs equals W = 250, T60 = 0:5s, and �0 = 0. Vertical dash-dotted line indicates the

coherence bandwidth �(T60) = 7=T60.

large room frequency. The microphone outputs were sampled with sampling frequency Fs = 2000 Hz, and the

estimated transfer functions were computed at 1024 frequency points in the interval [0; F s=2] Hz using the

Matlab-function tfe.m.

Given the set of 128 estimated transfer functions, we compute ĉr1r1 and ĉr1i1 as in the previous example.

However, before we investigate these results, we �rst study the ensemble average of the envelope of the
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Fig. 3. Synthetic Data: Spatial correlation, as a function of microphone separation. Here r = 3m, the number of

Monte-Carlo runs equals W = 250, T60 = 0:5s, and �0 = 0.

estimated impulse response:

�̂
h(nTs)

4
=

1

128

128X
k=1

ĥ2k(nTs); (47)

where ĥk(t) denotes the estimated impulse response from the kth loudspeaker position. If hk(t) is due to

di�use sound propagation only,
�̂
h(nTs) should decay as e�13:8nTs=T60 , cf. [11]. Hence, logf

�̂
h(nTs)g should

decay linearly as a function of n. In Fig. 5, the outcome of logf
�̂
h(nTs)g is illustrated, where a straight-

line approximation of the reverberant part is illustrated as well. From the straight-line approximation, we

estimate the reverberation time as approximately T̂60 ' 0:35s, resulting in a Schroeder large room frequency

fS ' 150Hz. Using T̂60, we can further compute the theoretical values of cr1r1 and cr1i1 . Hence, in Fig. 6, we

illustrate cr1r1 and cr1i1 together with ĉr1r1 and ĉr1i1 .

>From Fig. 6 we note a good agreement with the theoretical expressions, and in Fig. 5 we see that

logf
�̂
h(nTs)g is close to a straight line (at least for n > 40 samples). Note that these results are obtained

with the direct-path propagation included, in contrast to our examples using synthetic data. This is probably

the reason why the theoretical correlation decays more rapidly than ĉr1r1 as the frequency separation increases.

The direct-path propagation is included since it is di�cult to subtract the direct-path transfer function when

dealing with real data. In Figure 5, we further notice three di�erent characteristics of logf
�̂
h(nTs)g: direct-path

propagation for 5 � n � 15, dominant early re
ections for 15 � n � 40, and late reverberation for n > 40.
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The main modeling error of the proposed reverberation model in then that the dominant early re
ections are

neglected and lumped together with the reverberant part.
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Fig. 4. Locations of the loudspeaker used to estimate room transfer functions. Here \+" indicates the location of the

microphone, and \�" indicates the loudspeaker positions.
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Fig. 5. Real Data: Logarithm of
�̂
h(nTs).

V. Conclusions

Robust microphone-based source localization is an important ingredient in several multimedia signal-

processing systems. However, experience has shown that the problem of localizing acoustical sources in

reverberant environments is di�cult. Hence, for quite some time there has been an interest in understanding

and analyzing the performance of localization techniques when room reverberation is present.

For this purpose, a new reverberation model was proposed. This model is developed exploiting known
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Fig. 6. Real Data: Estimated normalized correlation functions of H(!), using real data.

results in room acoustics along with Most of the presented results were previously known in the literature.

that the room transfer function consists of a direct-path propagation and a reverberation tail, where the

reverberation tail of the room impulse response is assumed to describe di�use sound propagation.

Simulated examples, and also real data recordings, indicated that the proposed model accurately can de-

scribe actual room transfer functions. In a companion paper, the statistical model will among others be

utilized to analyze common time-delay estimators.
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