Head Pose Estimation in Computer Vision: A Survey

Erik Murphy-Chutorian, Student Member, IEEE, and
Mohan Manubhai Trivedi, Fellow, IEEE
PAMI, April 2009

Presentation by: Naresh Kumar M S
Introduction

• What is Head Pose Estimation?
• Challenges – camera distortion, illumination changes, facial expressions, biological appearance, occlusion, perspective distortion.

Fig. 1. The three degrees of freedom of a human head can be described by the egocentric rotation angles pitch, roll, and yaw.
Motivation

• Head movement is an important gesture.
• Useful to infer other information such as gaze.
• Applications in HCI, Driver Assistance Systems, Activity and Behavior Analysis.

Fig. 2. Wollaston illusion: Although the eyes are the same in both images, the perceived gaze direction is dictated by the orientation of the head [134].
Head Pose Estimation - Methods

8 categories based on the fundamental approach used:
- Appearance Template methods
- Detector Array methods
- Nonlinear Regression methods
- Manifold Embedding methods
- Flexible Models
- Geometric methods
- Tracking methods
- Hybrid methods
Appearance Template methods

- Uses image based comparison metrics.
- Compares new image with a set of exemplars.
- Advantages:
 - dataset can be easily expanded.
 - negative training examples and facial feature points are not required.
 - well suited for low and high resolution imagery

Fig. 3. Appearance template methods compare a new head view to a set of training examples (each labeled with a discrete pose) and find the most similar view.
Appearance Template methods

• Disadvantages:
 - estimates only discrete poses.
 - depends on reliable head region detection.
 - computationally expensive for large datasets.
 - pair wise similarity does not necessarily mean pose similarity.
Detector Array methods

• Multiple trained face detectors.
• Each trained to a different discrete pose.
• Similar to Appearance Template methods.
• Advantages:
 - Separate head detection not required.
 - Training algorithms ignore variations in appearance.
 - Well suited for low and high resolution imagery.
Detector Array methods

• Disadvantages:
 - computationally expensive.
 - burdensome to train multiple detectors.
 - more training data is required.
 - positive and negative samples could be quite similar.
 - ambiguity if more than one detector classifies the image as positive.
Nonlinear Regression methods

• Nonlinear mapping from Image space to pose space.
• A model is built based on a labeled training data.
• Some of the techniques used: SVRs, MLP, LLM
 PCA is used to reduce dimensionality.
• Alternatively, facial feature locations can also be used.
Nonlinear Regression methods

• Advantages:
 - fast and most accurate.
 - requires just the cropped labeled faces for training.

• Disadvantage:
 - prone to error from poor head localization.
Manifold Embedding methods

• Treats each image as a sample in high dimensional space and to be lying on a low dimensional continuous manifold.
• The manifold is modeled and an embedding technique is used to map a new sample into the manifold.
• Regression or template matching can then be used to estimate pose.
• Manifold mapping techniques: PCA, KPCA, LDA, LLE etc
Manifold Embedding methods

• Advantage:
 - embedding can be performed by simple matrix multiplication

• Disadvantage:
 - lack representational ability of the non-linear techniques.
Flexible models

• Use a non-rigid model which is iteratively fit to conform to the facial structure of each individual.
• Uses training data with annotated facial features.
• Examples: EGM, AAM.
Flexible models

• Advantages:
 - Invariance to head localization error.
 - Less inter-subject variability.

• Disadvantages:
 - Computationally expensive
 - Does not work well with low resolution images.
Geometric methods

• Use precise configuration of local features.

• Advantages:
 - fast and simple.

• Disadvantages:
 - require high precision location of the features.
 - does not work with low resolution images.
 - occlusion
Tracking methods

• Uses temporal continuity to provide the head pose estimate by tracking the head.
• Initial position of the head needs to be initialized.

Fig. 9. Tracking methods find the relative movement between video frames to estimate the global movement of a head.
Tracking methods

• Advantages:
 - Very accurate tracking is available.
 - Some of the challenges are taken care by the tracking algorithm itself.

• Disadvantages:
 - Initialization needs to be very accurate.
 - Semi automatic.
Hybrid methods

• Combination of the other methods.
• Advantage - Overcome limitations of the individual methods.
• Disadvantage - Resulting algorithm could be very complex.

Fig. 10. Hybrid methods combine one or more approaches to estimate pose. This image is an example of an appearance template method combined with a point tracking system.
Ground Truth Datasets

• Necessary to evaluate and compare the performance of head pose estimation systems.

• Methods to obtain ground truth data:
 - Directional suggestion
 - Directional suggestion with laser pointer
 - Manual annotation
 - Camera arrays
 - Magnetic sensors and Inertial sensors
 - Optical motion capture systems
Questions?
Thank You!
Questions

• Write a note on Detector Array methods and Tracking methods.
• How are the detector array methods different from Appearance Template methods?
• Write a brief note on any two methods for capturing ground truth data for head pose estimation.
• Which method for ground truth data acquisition is the best in your opinion? State your reasons.