Toward the Autonet Vision

Will Recker
Institute of Transportation Studies
University of California, Irvine
wwrecker@uci.edu

WITTS 10/19/01
Institute Scope

- Restructuring Traffic Flows by Sharing Information

- Sensor-based real-time monitoring of traffic & cars
- Peer-to-peer ad hoc communication and control
- Extension of the Internet Into automobiles
- Creating intelligent vehicles
- Autonomous transportation agents and systems
- Visual context capture & microphone arrays
- Wireless mobile multimedia systems
- Driver distraction/attention assessment
- Fostering intelligent management

Mobile interactive Avatars
- Televiewing using omni-directional cameras
- Semantic databases and architecture
• **UC Multi-campus Research Unit**
 – 20 – 25 faculty, 40 – 50 graduate students
 – $3 million annual C&G research expenditures

• **Research Centers within ITS**
 – UC Transportation Center
 – PATH ATMS Center
 – Center for Activity Systems Analysis
 – Advanced Transportation Systems Testbed

• **Testbed**
 – Integrated R & D program in Intelligent Transportation
 – Fully-instrumented operations environment
 – Real-time links to research laboratories
 – Testing ground for national ITS efforts
Testbed Wireless Elements: Mobile Surveillance

• Wireless Communication
• Acoustic detector system for wireless ramp metering
• RTMS detector system for collecting mainline traffic data
• Low Voltage LED signal head
• Solar Powered system
Testbed Wireless Elements: Mobile Transportation Management Center

• Wireless Communication
• Receive & transmit compressed video to TMC
• Voice & video conference with TMC
• Operate TMC ATMS from within MTMC
• Acoustic detector system for wireless ramp metering
• RTMS detector system for collecting ramp and mainline traffic data
Testbed Wireless Elements: Real-time Vehicle Tracking (TRACER)

- Web-based CDPD 2-way Wireless Communication
- Receive & transmit data via web-based interface
- PC 104 Pentium Processor, Linux OS, Compact flash RAM
- 12-channel Garmin GPS 35 TracPak
- Vibration sensor for auto on/off
- OpenMap GIS Analysis and Display
Testbed Wireless Elements: OpenMap GIS – GPS Tracings
Testbed Wireless Elements: Web-based Travel/Activity Diaries (REACT!)

- Web-based household level processing of travel and activity
- Integrated GIS facilitator
- Integration with TRACER
Vision: Evolution of Transportation Systems

• Evolution of traffic information
 – From pavement to vehicle
 – From centralized to distributed
 – From uni-directional to pervasive
 – From sparse & rudimentary to continuous & rich
 – From static to dynamic
 – Toward enabling real-time management, communication & control

• Evolution of traffic data processing
 – From TMCs to the vehicle
 – From centralized to distributed
Vision: Evolution of Transportation Systems

• Evolution of traffic decision making
 – From historical to real-time
 – From locomotion toward mobile computer
 – From control-based to information-based
 – From managed to self-organizing
 – Toward a wireless distributed traffic computer
Vision: Intelligent Transportation - AUTONET

- **Concept**
 - Mobile, ad-hoc, wireless, peer-to-peer platform
 - Distributed sensing, computation, and control
 - User-control, system benefits

- **Applications**
 - Autonomous distributed traffic control
 - Intelligent agents for route choice
 - Multi-level state estimation/prediction
 - Decentralized databases
 - Distributed processing
 - Mobile software agents
Intelligent Transportation - ZEV•NET

• AUTONET - Path to Implementation
 – Caltrans ATMS Testbed + Cal-(IT)2 = Wireless Testbed
 – UCI Station Car Initiative - ZEV•NET

• ZEV•NET – Goals and Objectives
 – Fulfill intent of CARB ZEV Clean Air Mandate
 – Accommodate urban growth/sprawl
 – Initial testing ground for AUTONET components
ZEV•NET Communications

- **User to vehicle (PDA or cellphone)**
 - Vehicle authorization, range warnings & charging locations, en-route navigation, walk-up rentals

- **Vehicle to network (wide area wireless)**
 - User authentication & theft prevention
 - Monitoring
 - charge status, location, environmental
 - Traffic updates

- **User to network (wireless & wireline)**
 - Reservations/cancellations, billing
 - Vehicle availability
ZEV•NET Implementation

- Current implementation
 - Irvine Transportation Center
 - Charging stations & Photo-voltaic canopy
 - Corporate shared-use model
 - 50 vehicles (Toyota)
 - 10 E-Coms
 - 30 Rav-4 Evs
 - 10 Prius Hybrids
 - Rudimentary wireless tracking & communications
 - On-line behavioral survey
 - Additional stations (Riverside, San Diego)
 - Stationary fuel cells for power generation

- Next-steps (Dec 2001)
 - Additional vehicles
 - Nissan Hyper Minis?
 - Ford Think?
 - Additional stations (Riverside, San Diego)
 - On-line Survey

Current implementation
- Irvine Transportation Center
- Charging stations & Photo-voltaic canopy
- Corporate shared-use model
- 50 vehicles (Toyota)
- 10 E-Coms
- 30 Rav-4 Evs
- 10 Prius Hybrids
- Rudimentary wireless tracking & communications
- On-line behavioral survey
- Additional stations (Riverside, San Diego)
- Stationary fuel cells for power generation
Research Issues: Realizing AUTONET

• **Sensor Technology**
 – Smart Sensors, Small Sensors, Distributed Sensors
 – Self-powered Sensors, Traffic-powered Sensors

• **Data Management**
 – Data Fusion of Multiple Sensor Sources from Multiple Processors
 – Network Abstractions & Synchronization

• **Computing**
 – Distributed Processing, Grid Computing
 – Dynamic Networking of Mobile Computers

• **Algorithms**
 – Dynamic Network Optimization in Real Time