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Abstract 

Our research is focused on the development of novel 
machine vision based telematic systems, which provide 
non-inmiveprobing of the state of the driver and driving 
conditions. In thispaper wepresent a system which allows 
simultaneous capture of the driver’s head pose, driving 
view, and surroundings of the vehicle. The integrated 
machine vision system utilizes a video stream offill 360 
degree panoramic field of view. The processing modules 
include perspective transformation, feature extraction, 
head detection, head pose estimotion, driving view 
synthesis, and motion segmentation. The paper presents 
a multi-state statistical decision models with Kalman 
filtering based tracking for head pose detection and face 
orientation estimation. The basic feasibility and 
robustness of the approach is demonstrated with a series 
of systematic experimental studies. 

1. Introduction 

Driver distraction is an important issue in developing 
new generation of telematic systems [l]. To help reducing 
distraclions caused by cell phone usage, a mobile machine 
vision system can be developed to actively control the 
conversation according to the driver status and the traffic 
conditions [2]. Our research is directed towards the 
development of a novel driver assistance system, “Visual 
Context Capture, Analysis and Televiewing (VCAT).” It 
derives visual context information on the driver and the 
traffic conditions. These cues could be used by the remote 
caller to change the conveMtiona1 style according to 
events in or around the car, as shown in Figure 1. Visual 
cues about the driver and traffic conditions can be 
conveyed to the remote caller in raw video, in avatar and 
animated scene, and in cartoon formats. Thus the system 
provides a telepresence experience to the remote caller l i e  
a passenger sitting in the car. It also estimates the attentive 
direction of the driver and mitigates the conversation by 

audio-visual warnings. In this twofold effect, cell phone 
usage would be safer by avoiding the driver from being 
distracted. 

Figure 1. Information flow and context analysis of the 
VCAT system for driver assistance on cell phone safety. 

In order to implement the VCAT system, a full 
coverage of the interior space and the dynamic scene 
outside of a vehicle must be captured for both televiewing 
and visual context analysis purposes. We use one 
omnidirectional camera, or as the master sensor. 
The advantage of using omnicam is that it automatically 
supports event synchronization among in-vehicle and 
surroundings since they are captured in one shot. It can be 
used to extract preliminary visual context at lower 
resolution and higher processing speed, and possibly drive 
a few rectilinear cameras where higher resolution video is 
needed As shown in Figure 2, multiple perspective views 
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can be simultaneously generated from the omnicam video 
on the driver, passengers, and surroundings by a nonlinear 
transformation with any pan, tilt, and zoom values [31. 
This enables the VCAT system to analyze driver’s viewing 
direction fiom the driver video and generate simultaneous 
driver’s view 60m the omnicam video. The surroundings 
of the vehicle, including blind spots, can also be processed 
to estimate the traffic condition and detect potential risks. 
Using these information, the attentive status and workload 
of driver can be estimated, possibly with other information 
such as facial expression [4] and maneuvering of car [5 ] .  
This allows the VCAT system to decide when and bow to 
mitigate cellular phone conversation and wam the driver 
appropriately. 

Figure 2. Simultaneous multiple perspective video 
generation on single omnidirectional video for event 
analysis. It enables he- to- f iame synchronization by 
nature. 

In this paper we will cover two visual context analysis 
clusters for tbe driver’s view generation and surround 
traffic conditions. Experimental evaluations on these 
modules will be presented. 

2. Generation of Driver’s View 

In order to generate instantaneous driver’s view, it 
needs to detect and track driver’s bead to extract driver’s 
face, then estimate the driver’s viewing direction from the 
driver’s face image. Then the perspective view seen by the 
driver can be generated from the omni-video parallel to the 
driver’s viewing direction. 

2.1 Head Detection and Tracking 

Head detection and tracking is a crucial module for the 
robustness of the driver assistant system. As compared to 
indoor situations [6], it is noted that ( I )  there is only one 
driver and the driver cannot wander around in car, and (2) 
the illumination condition is highly irregular both in 
intensity and in spectrum. For (l), we only need to 
generate a perspective view on the driver seat to find the 
driver’s face. For (2), although skin-tone based face 
detection is the fastest, it will not be feasible bere due to 

variant illumination spectrum. Edge-based methods are 
more robust then other feature extractions because they 
only rely on contrasts in the image. From the edge map, 
driver’s head can be located by ellipse detection. The 
proposed bead and face detection scheme is shown in 
Figure 3. A perspective view on the driver’s seat is fvst 
generated. For faster processing, the image is sub-sampled 
and converted to gray scale for edge ‘detection. 
Randomized Hough transform @HT) [7] is used to search 
ellipses in the edge image with center, size, and orientation 
constraints to match general buman heads. Each head 
candidate image is extracted by rotating the driver 
perspective image so that the corresponding ellipse aligns 
with a upright head pose in order to compensate head 
tilting. Driver’s face image is cropped by a square window 
fitting to the ellipse and the image is scaled to a 6 4 x 6 4  
image to reject non-face candidates by distance from 
feature space (DFFS) method [SI. Then the ellipse center, 
size, and orientation are used to update a set of constant 
velocity Kalman filters [9], 

rm Driver’s seat 

Filter for Head el 
e 

FawNon-face 
Classification 

Figure 3. Driver’s head detection and mcldng. 

(1) 
y (k )  =[I 0 + o ( k )  [Wl 

where for ellipse center and size, state I and measurement 
y are 2 by 1 and 1 is 2 by 2 identity matrix. For ellipse 
orientation, I, y. and I are 1 by 1. Tis sampling interval or 
firame duration, i.e., 1/30 second. The covariance of 
measurement noise w(k) is estimated fiom real-world data, 
and the covariance of random maneuver Nk) is empirically 
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chosen by compromising between response time and 
sensitivity to noise. The states are used to interpolate 
detection gaps and predict the head position in the next 
frame. An ellipse search window is derived fiom the 
prediction and fed back to ellipse detection for the next 
frame. This window belps minimizing the area of ellipse 
searcb and reducing the epochs of RHT to increase the 
accuracy and speed. It also belps filtering false-positive 
head ellipses as in Figure 3. 

The head tracking is initialized when an ellipse is 
detected and justified to he a head for some consecutive 
frames. Extensive RHT ellipse searching on the driver 
seat perspective view is used to find the fmt positive 
occurrence of bead. Once driver’s head is located and 
under tracking, the searching window is narrowed down 
and RHT uses less epochs to speed up the detection 
process. The track is terminated when no ellipse is 
detected and the predicted head location is classified as 
non-face for some consecutive frames. 

2.2 Face Orientation Estimation and Driver’s View 
Generation 

The next step is to estimate driver’s face orientation. 
The proposed method fur the face orientation estimation is 
illustrated in Figure 4. After being adjusted for head tilting 
previously,. driver’s face image is compared to the view- 
based PCA templates to estimate the face orientation. In 
the training stage, we ftrst collect a set of equalized 
training faces from the omnicam of multiple people with 
multiple horizontal face orientations. The orientation in 
the training faces varies approximately from -60 to 60 
degrees with 30 degree step sue. Then PCA subspace is 
wnsmcted from the correlation matrix of the training 
faces [SI and all the training faces are projected into this 
subspace. Mean and covariance of the training projections 
are estimated for each face orientation category and a 
Gaussian likelihood function is approximated for each 
category. In the estimation stage, the scaled and equalized 
face image in the face video is projected into the PCA 
subspace and generates likelihood values on these five 
Gaussian distributions. The face orientation is thus 
estimated by maximum likelihood (ML). The estimated 
face orientation is then filtered by another Kalman filter as 
in equation (1). Then driver’s viewing direction is 
computed eom the filtered face orientation as in equation 
(2) and illustrated in Figure 4, 

Viewing Direction = 

(Direction ofDriver) - 180’ + 
(Face Orientotion) x K - (2) 

- x-,,,,) x (degree per pixel) 
where the constant K approximates the ratio of gazing 
direction to facing direction for empirical driver gazing 
behavior. Tbe last term in equation (2) is used to take the 
exact location of head in the driver image into accounc 
where xexw is tbe center of ellipse in x direction and 

xmck,,, is the center of driver image in x direction. 
Thus driver’s view video can be generated from the 
omnicam video with a fixed zooming factor to 
approximate human field of view, as shown in Figure 5.  

Head Ti16.g 
COmp.=CCSiltiOn 

Omnica” 
Figure 4. Estimation of bead pose and face orientation, see 
text for details. 

P m m t i v e  Head Driver’s view 

Figure 5. Some results of the perspectives of driver, 
constrained bead detection and tracking, face orientation 
estimation, and instantaneous driver’s view generation for 
televiewing. Note the differences in illumination condition 
and camera location in these video clips. 

3. Experiment Results and Discussions of 

Evaluation of the bead tracking and face orientation 
estimation is accomplished using an extensive array of 
experimental data. We tested many driving video clips 
taken on different days and on different road, weather, and 
traffic conditions. Averaged bead detection rates on two 
camera setups are summarized in Table 1. When low 
epoch RHT is applied without feedback of ellipse search 
window, the bead detection rate is very poor. The rate 
improves if we use extensive RHT ellipse search on each 
fiame, yet the processing speed is very slow. After the 
feedback loop is closed, we use extensive RHT searcb only 
on the first frame and fall back to rough RHT if the bead is 
detected, the head detection rate is much improved to be as 
good as or even better than the extensive RHT, and the 
processing speed is as fast as the rough RHT. After KF 
tracking and interpolation, no frame is missed even in 
some tough situations l i e  face occlusion, sharp uneven 
illumination, and turned-away face as shown in Figure 6. 

Driver’s View Generation 
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The false positive rate is 9% if the DFFS bound is 2500 
and is 7% if the DFFS bound is 2000. 

Table 1. Averaged head detection rates before Kalman 
filtering on two camera setups. For setup 1, the camera is 
placed in front of the passenger seat and approximately 45’ 
side viewing the driver. For setup 2, the camera is front- 
left to the driver. For rows 1 to 3, no ellipse search 
window is fed back and full image search is used. Note 
when search window is applied (row 4 and row 5), the 
detection rate of RHT ellipse search with less epochs is 
nearly as good as the rate of extensive RHT and the 
processing speed is much faster. Mer  Kalman filtering, 
the head is latched on by the detected ellipse for all h e s .  
DFFS bound for rejecting non-face candidates in these 
experiments is 2500. 

Figure 6. Some situations that trouble the face orientation 
estimation. 

Comparing setup 1 and setup 2 in Table 1, it suggests 
that the camera placement should be closer to the front of 
the driver. lo this case the driver’s face is more clear and 
the edge map of driver’s head is closer to ellipse. Active 
infrared illumination would be helpful to increase head 
detection rate since it makes the image more clear and 
smoothes illuminations, weather, tunnel, and night 
variations. Also, there is a trade-off between head 
detection rate and speed for RHT based ellipse detection. 
Higher head detection rate would be desirable because the 
dynamics of head motion can be quickly captured. 
However, it would need more epocbs and sacrifice the 
speed. It poses a need for less complicated ellipse 
detection algorithms. To further speedup the process, 
multiple processors or DSP hardware would be needed. 
The tasks of head detection and tracking in Figure 3 can be 
partitioned to view generation, edge detection, ellipse 
detection, and PCA-based face classification. Each part or 
a group of modules can be assigned to a specific processor. 

Table 2 shows the averaged accuracies of face 
orientation estimation on test clips of different length. The 
error of face orientation estimation on each frame is 
compared to the manually estimated approximate ground 

huth value. The long, mi4 and short term clips exhibit 
comparable accuracies. However for some situations as in 
Figure 6 and fast huning faces, the standard deviation of 
the estimation is about 3 to 4 times larger. For face 
occlusion, there is no good remedies except by 
interpolation along the frames using Kalman filter. The 
Wed-away face could be alleviated by placing the 
omnicam near the front of the driver so it captures all the 
possible orientations of the face. For uneven illumination, 
PCA templates are prone to produce higher error rates. 
Other subspace feature analysis like LDA or ICA 
templates [lO][l I] would be helpll  in this case. 

Table 2. Long, mid, and short term accuracies of face 
orientation estimation. The face video is cropped by a 
closed-loop bead detection and tracking with RHT of 
10-2 epochs. The ermr before KF is the error of the 
output of the ML face orientation estimation and the error 
after KF is the error after the Kalman filtering in Figure 4. 

Eye-gaze direction estimation is needed for an accurate 
driving view. In equation (2), we use a rough estimate of 
driver’s gazing direction from driver’s face orientation. 
Rectilinear camera set on the dash board would be needed 
because the omnicam resolution is not sufficient for the 
pupil. A commercial system, facelab, of Seeing Machines 
is an example for this purpose [12]. Also, active i&ed 
illumination could be useful to estimate eye-gaze direction 
by bright pupil effect. 

Head Tding 
C0”tian 

Gaussian Likelihood 
F V ~ ~ O M  

Figure 7. Modified face orientation estimation by 
continuous density HMM. Face video is projected into 
feature subspace and generates M Gaussian likelihood 
values. 

To improve the dynamic performance of face 
orientation estimation, we observe that the Gaussian 
likelihood information in Figure 4 is discarded by the 
maximum likelihood decision, We can construct a 
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continuous density HMM to fully utilize these information, 
as shown in Figure 7 [2]. The Markov claim could have 
N=13 states which represent face orientations from 
approximately -90 to 90 degrees with 15 degree step size. 
The observation probability of the j-th states bj (0)  can be 
modeled by a mixture of the five Gaussian distributions 
[I31 in PCA subspace for eacb training face orientation 
category as previously mentioned The state sequence 
q(k) given a driver's face video can be estimated by 
maximm (I posteriori (MAP) estimation in real-time or 
optimally estimated by Viterbi algoritbm [13] with some 
delay caused by sequence 6a" ing .  The estimated state 
sequence represents the face orientation movement of the 
driver. Although the experimental data are still under 
evaluation, we anticipate that this approach will out- 
perform the method in Figure 4 in that it is a delved  
decision approach [14]. The face orientation sequence can 
be further utilized to estimate driver's attentive and 
psychological status by a hierarchical layer of estimators 
such as Bayesian nets [15]. We will conduct experiments 
on these schemes in the near future. 

(2) Apply the transformation (3) to compensate ego- 

(3) Convert the motion compensated point back to the 

motion, and 

omni-image by (x; y' ,p  =&I y' q). 
Approximate estimate of the planar motion 

transformation H is obtained from the camera calibration 
parameters, as well as kom the vehicle speed using the 
CAN bus. However, if the camera is vibrating, or its 
velocity is inaccurately known, features on the road 
surface such as lane marks could also have residual 
motion. This residual motion can be used to refine the 
motion parameter estimates in a Bayesian framework [16]. 
Here, the approach is generalized for omnicameras to 
optimally combme the prior knowledge of motion 
parameters with the motion residual of the image features. 

Under favorable conditions, the spatial gradients 
(g, ,gy) ,  the temporal gradient (g,) ,  and the image 
velocity ( u , , u , ) = ( x ~ ~ - x ~ , ~ ( ~ - ~ ~ )  of an image satisfy the 
optical flow constraint, 

4. Surround Monitoring 

In addition to monitoring the driver's state, visual 
context of surround traffic conditions can also be derived 
from the omni-video. In order to detect the nearby 
vehicles, simple background subtraction for indoor 
environments would not be feasible since the car is always 
moving. In this section we present a motion-based 
surround vehicle segmentation scheme suitable for the 
mobile VCAT application. 

From the camera on the vehicle, the independent 
motion of the surrounding vehicle would be separated 
from the ego-motion of the road. The road can be modeled 
as a planar surface, and the motion of the points on the 
road is given by the following transformation [16], 

(3) 
where (= .) and (x* y' z*) are the homogenous image 
coordinates of a point on the road in two h u e s ,  and H is 
a 3x3  matrix expressed in terms of camera motion and 
calibration. Features that are not on the road or have 
independent motion do not satisfy this model, and have 
residual motions. Thus a surrounding vehicle can be 
detected by warping one image to another and comparing 
the motion compensated images. 

For omnidirectional video, the image distortion due to 
camera optics also needs to be considered. A combined 
transformation for mapping a point in one image to another 
is given by the following procedure: 

(1) Convert the pixel coordinate from the omni-image to 
the homogenous coordinates in the perspective view 

(x* y' z 'y  = H ( z  y z y  

by (x .y = f ( (rp y,y) .  (cf. [31) 

Image motion is expressed parametrically in terms of 
motion parameters for a number of image points as 
z = a(1) + v where 

I= HI, "' f f 3 * ) P , ,  

( 5 )  
and v is the measurement noise in the time gradient. The 
estimates of the state I and its covariancep are iteratively 
updated using the measurement update equations of the 
iterated extended Kalman filter [9], 

P,+, =(H,IR-*H, + P : I ~ (  

K X )  = g.(x',-x,)+ g y W p - Y p ) ,  = g, 

(6) 
i,,, = ~ ~ + P , + , [ H , I R - ' ( = , - b ( x , ) ) - P ~ ' ( i , - ~ . ) l  

where H, is the Jacobian of b(x) at I = i,, I. is the prior 
approximately known state, and P. is the prior covariance. 
To avoid using outlier points that do not satisfy the ego- 
motion model, robust estimation [I71 is applied. Also, 
since the optical flow constraint is valid only for small 
image motion, come  to fine estimation [I 81 is used. 

Figure 8 shows the experimental results of the 
surroundmg vehicle detection. The image motion is 
analyzed in the area of interest on the driver side. 
Normalized difference [19] between the motion 
compensated images is used to enhance the vehicle 
features having height or independent motion and to 
attenuate the road features. Post-processing is used to 
further suppress remaining road features, and the 
components that are close to each other are grouped into a 
bounding box. 
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Figure 8. Result of surrounding vehicle detection. (a) 
Current h e  of the image, with estimated image motion 
in the area of interest. (b) Points used for estimation of 
ego-motion. Gray: inliers, White: outliers, Black unused. 
(c) Normalized frame difference in the area of interest. (d) 
Output after post-processing and clustering. 

The robustness of the proposed scheme can be further 
improved by integrating the estimation process over 
frames. For example, outlier removal could be improved 
by propagating the outlier pixels frnm frame to frame. 
Similarly, the motion parameters can be updated over time 
using Kalman filter. For better driver assistance, other 
detection modules for lanes, pedestrians, and traffic signs 
could also be added. 

5. Concluding Remarks 

In this paper we have presented the VCAT driver 
assistance system in order to enhance cell phone safety for 
the driver. We described development of an integrated 
machine vision system for accurate and robust estimation 
of the driver’s viewing direction and surrounding traffic 
conditions using an omnicamera. Novel algorithms using 
Kalman filtering based tracker and multi-state HMM 
models have been evaluated using a series of experimental 
studies. These experiments have proven the basic 
feasibility and promise of the approach. Euhancement of 
the system performance can be accomplished by using 
higher resolution video, specialized in-vehicle 
illumination, and embedded processors. In the futnre, 
these modules could be integrated for the estimation of 
driver’s attentive status and workload. 
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