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ABSTRACT
The particulars of facial gestures are frequently used to qual-
itatively define and characterize faces. It is not merely the
skin motion induced by such gestures, but the appearance
of the skin changes that provides this information. For ges-
tures and their appearance to be utilized as a biometric, it is
critical that a robust model be established. For this purpose
we are exploring gesture manifolds.

This paper describes work underway toward evaluation
of the manifold representation of facial gestures both as a
biometric, and as a means to extract biometric information.
Details of the current acquisition system are discussed with
the motivating principles behind the device. Preliminary ob-
servations are presented to motivate manifold analysis fol-
lowed by an exposition of the experiments underway that
will be used to validate the model.

Categories and Subject Descriptors
I.5.4 [Pattern Recognition]: Applications—Computer vi-
sion
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1. INTRODUCTION

“The little twitch comes and goes so fast it’s
easy to miss. It’s in the corner of [his] face, and
it betrays the seething anger hidden beneath his
mask of calm. It’s not even anger, really, that
seethes inside there - but indignation, that crim-
inals are going free while the San Francisco Police
Department devotes itself to public relations.”

- Roger Ebert on The Dead Pool
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Clint Eastwood fans will instantly recognize the descrip-
tion above as Dirty Harry, but, what is it about the de-
scription that gives it away? The character is clearly male,
and affected emotionally by the crime in San Francisco and
the laissez fair attitude of the city’s police department. But
that merely narrows it down to a few million people. The
giveaway is the twitch. The characteristic squinting of the
eye that we have come to associate with the Dirty Harry
character.

Considering that the eye twitch is such a strong indicator
of Clint Eastwood’s character, it is apparent that this, and
other such “characteristic” gestures are useful in recognizing
individuals. In other words, gestures may be useful as a
biometric.

It is not, however, the twitch alone that identifies his char-
acter. While a gesture such as an Dirty Harry eye twitch
or a George Bush smirk clearly helps define the person’s
character, it is not a sufficient description; there are many
people with eye twitches and even more with characteristic
smirks. Recognition involves assembling information from a
variety of physiological and behavioral observations of a sub-
ject. Gestures can, however, reduce the uncertainty present
in other unimodal biometrics and enhance recognition.

The key problem (and focus of our work) is to find ro-
bust operators and computational framework for character-
izing both the temporal and appearance characteristics of
facial gestures. We are exploring a model of facial gestures
based on appearance manifolds (G-folds) that encapsulates
spatio-temporal appearance information of a facial gesture
in a single structural model [6]. Properties such as asym-
metry, gesture intensity, and gesture dynamics can be easily
extracted using a controlled spatial decomposition of the
face.

Gesture manifolds [6] are an interesting application of
parametric appearance models [16] to the analysis of fa-
cial gestures. In [7] the face is partitioned into local co-
articulation regions. Facial gestures analyzed in these re-
gions exhibit a coherent correlation structure in the form of
paths in PCA space parameterized by gesture intensity. G-
folds are well suited to real-time gesture analysis on trained
subjects and are applied in [6] to control of facial animation.

This work is also related to modular eigenspace approaches
[19] where PCA subspaces are constructed at local face fea-
tures. In G-folds however, partitions are tailored to gestures
(dynamic features) rather than static facial features such as
the nose and eyes. Eigenspaces are constructed using tem-
porally varying images from a single subject, rather than
static images across several subjects. Given the distinctive
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characteristics between the correlation curves of different
subjects, it was suggested that the G-folds may be effective
as biometric signatures [17].

The intent of this paper is not to prove the utility of the
G-Folds representation, but to motivate its potential. The
remainder of the paper will detail the experiments currently
underway in the CVRR lab at UCSD to assess both the
theoretical and practical ramifications of the G-fold model
for use as a fundamental biometric and as an analysis tool for
extracting biometric information. This paper will also detail
the infrastructure developed that is necessary to carry out
such experiments with confidence.

2. VIDEO-BASED DYNAMIC BIOMETRIC
FEATURES: RELATED STUDIES

The idea that expressions contain useful information for
recognition of faces is not new. Significant work has been
performed to assess the effects of facial dynamics (vs. static
faces) on subject memory and subsequently a subject’s abil-
ity to recognize new faces, possibly from novel view angles
or lighting conditions. Particularly, evidence suggests that
facial dynamics enhances recognition accuracy under sub-
optimal viewing conditions [3].

Dynamics in the form of motion information is the focus of
most expression based recognition work[21][14]. Early work
by Basili showed a correlation between facial motion and the
perception of various key emotions [1]. As indicated in [9]
motion can also provide knowledge of subject gender.

While motion information is clearly part of the story and
serves to normalize variations due to lighting, skin color, and
other static facial variations, it loses significant information
that occurs as a result of dynamic skin wrinkling and static
appearance characteristics of the skin. These appearance
variations provide important evidence towards subject iden-
tity, both in the spatial and temporal domain as indicated
in O’Toole et. al. [18].

In an attempt to tease apart the roles of facial geometry
(form) vs. motion in identification of individuals, Knapp-
meyer et. al. explored the use of animated 3D models of
human faces. Results indicate a strong motion bias and
provide evidence that form and motion are “integrated dur-
ing recognition, rather than operating as independent cues.”
[12] This provides very strong motivation for a biometric
feature set that combines temporal and static appearance
information.

A similar conclusion can be drawn from their experiments
showing that the strongest motion bias is found in the ab-
sence of facial texture (when the 3D geometry is rendered
without skin texture from the acquired subject.) When tex-
ture is included, motion becomes less important in identi-
fying the face. This speaks strongly to the fact that facial
appearance plays an important role in face identification.

A very relevant approach to shape and texture unification
called active appearance models has been applied to face
interpretation[4][5]. Unfortunately, this model neglects the
temporal component of appearance.

Video based person tracking, body modeling, movement
and body tracking, face detection and recognition, and af-
fect analysis have been important areas of research in our
group. We have developed and deployed a series of systems
for multi-person tracking [20][11], face capture and pose esti-
mation [11][15], face recognition [10], and facial affect anal-
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Figure 1: Projection of gesture data for the eyebrow
raise and brow furrow gesture onto the first 3 prin-
cipal components of X. The principal trajectory of
each gesture actuation is shown in the solid curve.

ysis and face modeling [15] [7] [6] [8]. A common thread
running in all of these efforts is the dynamic analysis of the
variations captured by video signals, which results in accu-
rate, reliable, and robust algorithms.

3. G-FOLDS
This section will give a brief overview of the G-Folds rep-

resentation, but the reader is referred to [6] for a detailed
description.

The motivation for appearance manifold analysis is that
images with higher correlation in image space will be closer
in a reduced dimensionality PCA space [16]. Processes with
significant correlation over small parameter variation will
induce an appearance manifold that is a function of the pa-
rameter(s). In [6] the varied parameter is gesture intensity,
and indeed, there is significant correlation between similar-
intensity samples.

Figure 1 shows two gestures (FROWN and BROW FUR-
ROW) extracted from the center forehead region on a sub-
ject’s face. The gestures are each actuated three times from
a neutral starting point to full muscle contraction. The suc-
cessive intensity images of the gestures are reduced to three
dimensions using PCA and plotted in the reduced subspace.
It can be seen that the gestures trace out coherent paths as
the gesture progresses from neutral to maximum actuation.
The induced gesture structures are referred to as gesture
manifolds (G-Folds).

The set of discrete manifold samples of each gesture is fur-
ther reduced to a 1-D continuous curve by a second PCA on
the manifold samples for individual gestures and quadratic
polynomial regression. The curve parameter varies with ges-
ture intensity and hence the intensity of a new incoming
sample is determined by projection onto the polynomial.

4. EXPERIMENTS
We are pushing forward on two biometric applications of

this model. The first is a natural extension of [6] exploring
G-folds as a tool to extract gesture intensity parameters. By
analyzing gesture intensity, we have access to other infor-
mation such as gesture asymmetry and temporal actuation
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Figure 2: (left) Gesture intensity profiles for left
and right smile gesture. (right) Actuation intensity
difference between profiles.

patterns. On a second front, we are evaluating the mani-
fold structure itself as an explicit biometric signature. The
gesture manifolds encapsulate static and dynamic appear-
ance information in a single concise model. We are pursuing
closed-form and machine learning methods to compare the
G-fold signatures.

4.1 G-folds as an analysis tool for biometric
feature extraction

The G-fold representation was used in [6] for analysis of
the intensity of a specific set of facial gestures and used to
control facial animation sequences. There are several po-
tential physiological and behavioral biometric features that
can be extracted using such an intensity analysis tool. In
the behavioral domain we are currently exploring:

Gesture activation profile The activation profile over time.

Gesture frequency The frequency of actuation of a given
gesture, potentially co-occurring with other gestures.

Gesture context External factors that elicit the gesture.

Facial asymmetry Both static and dynamic asymmetries.

Of note, facial asymmetry was shown in [13] to contain rel-
evant information for face recognition. Asymmetry in that
work was characterized holistically (using the entire face)
using a spatio-temporal metric. Asymmetry in our case can
represented explicitly for particular gestures.

Figure 2 shows an illustrative example of the potential of
G-folds for asymmetry. The left plot shows gesture inten-
sity over time for the left and right side of the mouth during
the smile gesture. The differences in activation levels over
time are shown in the right plot. This difference plot char-
acterizes the dynamic facial asymmetry as the smile gesture
is actuated. Other similar secondary signatures are made
available by gesture intensity analysis.

4.2 G-Folds as a biometric signature
The distinct structure of gesture manifolds suggests that

they may function well as a biometric signature. However,
similar to the lip-profile example of Brand et. al. [2] G-folds

Figure 3: Illustrations of 3D manifolds for three sub-
jects A(top), B (mid), and C (bottom) actuating the
eyebrow raise gesture.

are difficult to classify as a behavioral or physiological bio-
metric in isolation. Arguably, this distinction is blurred fur-
ther in the case of G-Folds as dynamics are only implicit in
the signature, in fact the representation effectively removes
the temporal dependence.

To motivate the G-fold representation, the reader is ref-
ered to Figure 3. This figure illustrates a set of manifolds
for various facial gestures from three subjects. These man-
ifolds share similar structure (they traverse S-like curves in
appearance space), but there are also significant differences
between the manifolds of all three subjects. Qualitatively
comparing the two most similar manifolds, we see that the
tail of subject A is shorter, and the upper dip is less shallow
than subject B.

Figure 4 illustrates an independently observed actuation
of the eyebrow raise gesture. Qualitative comparison of this
observation to the manifolds in figure 3 shows greatest sim-
ilarity to subject B.

While the evidence suggests that the appearance dynam-
ics encapsulated in the G-fold model are important for face

?

Figure 4: Which subject generated this manifold?
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Figure 5: Test sequences for the furrow, smile, and
eyebrow raise gestures.

recognition, there are three fundamental questions we hope
to answer with the current experiments.

1. What is the raw recognition accuracy achieved with
G-folds signatures alone?

2. Can G-folds be used to enhance existing biometrics?

3. How can we combine G-folds signatures with gesture
intensity derived metrics for a combined physiological
and behavioral biometric.

5. EXPERIMENTAL SETUP

5.1 Gestures
To make an initial assessment of G-Fold utility we are con-

sidering 3 gestures: Eyebrow raise, smile, and brow furrow
shown in Figure 5. These gestures were selected primar-
ily for their ease of actuation. Each gesture is actuated six
times from neutral to maximum. To test the model under
somewhat varying internal conditions (mood, fatigue, facial
hair) full data sets are acquired from each subject in three
different sessions over the course of one month.

5.2 Infrastructure
The requirements for G-Fold analysis are shared with most

facial analysis systems. At a high level, we must decide upon
the variations we are interested in uncovering, and normal-
ize the remaining unwanted variations. For our experiments,
we are primarily interested in the appearance changes due to
facial gestures. Consequently, variations due to lighting and
pose are removed. While there are several signal processing
type methods for reducing these variations, each introduces
an element of uncertainty. In the interest of uncertainty
reduction, we have opted to construct a testbed that mini-
mizes the potential for head pose variation and completely
controls lighting.

The device consists of a closed wooden box with an open-
ing for the subject to place her head (Figure 6). The open-
ing is cushioned which serves to both comfortably retain the
head position in a relatively fixed position and orientation,
as well as match the contours of the face and thus block in-
coming light. Facial gestures and speech exhibit rapid vari-
ations that are blurred by standard (30Hz) video sensors. A
high frequency (50Hz) camera is therefore mounted at the
rear of the box, facing the subject to acquire images. A
point light source with diffusion material is mounted above
the camera to illuminate the face.

Recent trends towards multi-modal integration indicate
the need for multiple sources of information to reduce the

Figure 6: Acquisition device developed as part of
our testbed for multimodal analysis of facial appear-
ance, dynamics, and form.

natural uncertainty present in a single source. Though ges-
tures are the focus of this work, we recognize that gestures
alone may be insufficient as a biometric. The acquisition
system has therefore been outfitted with a microphone ar-
ray and thermal imaging device for acquisition of speech and
thermal signatures of gestures.

The system consists of three basic pre-processing units:
Sampling, Manifold Extraction, and Intensity Analysis. Two
biometric feature extraction units: one for extracting be-
havioral biometric information from gesture intensity data,
and another for physiological biometric manifold extraction.
A final biometric feature composition unit serves to merge
features and compare existing signatures. The data flow
through these modules is shown in figure 7.
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Figure 7: Experimental components

As G-folds are an appearance based model, small varia-
tions in alignment between samples can translate into large
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variations in the extracted manifolds. Face detection and
tracking are therefore important components in normalizing
the pose variations of expressive images. For face detection
and tracking we are currently using a Gabor wavelet feature
detector/tracker.

6. CONCLUSIONS
Distinctive facial gestures clearly assist in defining a per-

son’s character. The work underway in the CVRR lab at
UCSD is evaluating the possibility that facial gestures con-
tain sufficient person-specific information to identify a per-
son. The G-folds representation developed at USC is a rich
quantitative model of gesture appearance that we believe
holds great promise for biometric signature extraction.

The initial experiments are focused on the gestures listed
in the previous section, but manifold analysis is equally ap-
plicable to other constrained facial gestures. Following vali-
dation of the G-folds model, we intend to expand the work to
include both thermal and aural signatures. The constructed
testbed enables the combination of these modalities for more
robust biometric operator construction. The set of analyzed
gestures will also be extended.

The model has already been tested with great success for
person-specific gesture analysis [6]. Though quantitative re-
sults are not currently available, our current observations
indicate that G-folds are also excellent signatures for dis-
criminating between subjects. We are excited about further
pursuit of G-folds as biometric operators.
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