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Abstract 
Robust human face analysis has been recognized as a 

crucial part in intelligent systems.  In this paper we 
present the development of a computational framework for 
robust detection, tracking, and pose estimation of faces 
captured by video arrays.  We discuss the development of 
a multi-primitive skin-tone and edge-based detection 
module  embedded in a tracking module for efficient and 
robust face detection and tracking.  A continuous density 
HMM based pose estimation is developed for an accurate 
estimate of the face orientation motions.  Experimental 
evaluations of these algorithms suggest the validity of the 
proposed framework and its computational modules.   

1. Introduction 
Human-computer interaction has been an active topic 

in the research community of computer vision and 
intelligent systems.  These systems involve the recognition 
of human identities and activities in indoor, outdoor, and 
mobile environments, and among them face related 
analysis is the central focus.  However, it is recognized 
that without an accurate, robust, and efficient face 
detection as the front-end module, successful face analysis 
cannot be realized.  Robustness to background and 
illumination variations is known as a major challenge [5].   

Figure 1 shows an intelligent environment system that 
captures and tracks people to automatically derive events 
with camera arrays.  The 3D tracker runs on an omnidirec-
tional camera array for rough locations and heights of 
people in a large area.  A pan-tilt-zoom (PTZ) rectilinear 
camera then focuses on the head of a person.  Within the 
video, the human face is detected and tracked with finer 
resolution.  Face orientation is also estimated to select a 
suitable PTZ camera to capture the near frontal face for 
robust recognition.  Note that the face detection, tracking, 
orientation, and recognition are video-based to accumulate 
and filter the image likelihoods over frames [6].  It would 
significantly enhance the accuracy and the robustness in 
real-world situations such as illumination variations, 
cluttered backgrounds, occlusions, noises, etc.   

In this paper we focus on the algorithms of robust real-
time face detection, tracking, and orientation estimation 
from video data.  We then evaluate them using indoor, 
outdoor, and mobile video sequences.

Figure 1: An integrated system for person tracking and 
identification.  It uses video arrays for multi-person tracking 
and captures high resolution video using the most appro-
priate camera.  Captured video is analyzed for person 
identification or verification.   

2. Robust Real-Time Multi-Primitive  
Face Detection and Tracking 

Robust face detection and tracking is crucial in the 
integrated face analysis performance in indoor, outdoor, 
and mobile environments [7].  We use skin color and 
elliptical edge features in this algorithm.  Skin color 
allows rapid face candidate finding, yet it can be affected 
by other skin-tone objects and is sensitive to lighting 
spectrum and intensity changes.  Elliptical edge detection 
is more robust in these cases, yet it needs more computa-
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tion and is vulnerable to highly cluttered backgrounds.  
These two tend to complement each other [3].  The 
proposed closed-loop face detection and tracking is 
illustrated in Figure 2.  The subject video is first sub-
sampled to speed up processing.  On the skin color track, 
skin blobs are detected [12] if the area is above a threshold 
and face-cropping windows are derived from the blob 
moments.  On the edge track, face is detected by matching 
an ellipse to the face contour.  Since elliptic regressions 
from edge pixels [4] are slow and do not always yield 
valid head ellipses, we use a combination of two template 
methods that find the best match in a set of pre-defined 
head ellipses to the edges [3][8].  Possible head top is first 
located by finding the horizontal edge links.  Then an 
ellipse template is attached along the horizontal edge links 
at the top pixel of the ellipse.  The matching is to find the 
maximum ratio )1()1( ei IIR ++=  in the ellipse set, where 

( ) ⋅= pwNI ii 1  is a weighted average of p over a ring just 
inside the ellipse with w=2 at the top quarter of the ring 
and 1 elsewhere, ( )= pNI ee 1  is the averaged p over a 
ring just outside the ellipse, and gnp ⋅=  is the absolute 
inner product of the normal vector on the ellipse with the 
image gradient at that point.  This algorithm improves [8] 
by using the inner product p and accelerates [3] by the 
ellipse search scheme, thus making real-time full-frame 
ellipse matching possible.  After this, a face-cropping 
window is derived for each ellipse.   

Figure 2: The integrated "closed-loop" face detection and 
tracking on a mobile omni-video example.   

The skin-tone and elliptic face-cropping windows are 
then fused.  For each skin window, we find a closest 
ellipse window and average their upper-left corner 
coordinates and window sizes to crop the face candidate.  
The weighting between them can be adjusted for best 
results.  If there is no ellipse detected, skin windows are 
used solely, and vice versa for the ellipse windows.   

The face candidates are scaled to 64×64 size and com-
pensated for uneven illumination by subtracting a least-
squares fitted intensity grade plane.  Then they are verified 
by distance from feature space (DFFS) in PCA subspace 
[11] to reject non-face candidates.  Each positive face 
window is associated to an existing face window track by 
nearest neighborhood and used to update the constant 
velocity Kalman filter [1] of the track.  The Kalman filter 
interpolates detection gaps and predicts the face location 
in the next frame.  For each track prediction, an ellipse 
search mask is derived for the next frame to speed up 
ellipse detection by minimizing the ellipse search area.  A 
face track is initialized when a face is detected for some 
consecutive frames.  The track is terminated if the 
predicted face window is non-face for some frames.   

3. Robust Estimation of Face Orientation:  
A Multi-State Approach 

Next the face orientations in the video can be estimated 
for active camera control and assessing the attentive 
direction of the person.  We compare two face orientation 
estimation schemes as shown in Figure 3 and Figure 4.  
First the face frame is projected into a PCA subspace and 
only the first D dimensions are used since they carry most 
information [9].  The PCA subspace is constructed with 
the correlation matrix of training faces so that illumination 
variations can be reduced by projection vector normaliza-
tion [6][2].  In Figure 3, face orientation of the frame is 
estimated by maximum likelihood (ML) and filtered by a 
Kalman filter across frames.  Mean and covariance of the 
N Gaussian likelihood functions are estimated by Linde-
Buzo-Gray vector quantization (LBG-VQ) on the training 
projections.  Corresponding facing angle of a likelihood is 
found by averaging the ground truth angles of the training 
frames which are classified to this class by ML.   

In Figure 4, we build a continuous density hidden 
Markov model (CDHMM) [10].  The Markov chain (state 
transition matrix A) is linear bi-directional with N states 
relating to certain facing angles in order to model a 
continuous face turning.  The observation probability 
bj(xk) of state j is modeled by a mixture of M Gaussian 
densities, where xk is the projection vector of face frame k.
The state sequence q(k) of the face video which relates to 
the face orientations can be estimated by maximum a
posteriori (MAP) in real-time or optimally by Viterbi 
algorithm with minor delay caused by sequence framming.   
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Figure 3: The ML-Kalman scheme of face orientation 
estimation. 

Figure 4: Face orientation estimation by CDHMM. 

On CDHMM training, the initial probabilities π and the 
mixture coefficients C are randomly initialized.  The N×M
mean vectors µ’s of the Gaussian densities are initialized 
by two rounds of LBG-VQ.  First the training PCA 
projections are partitioned into N regions by VQ.  The 
facing angle of a region is the averaged ground truth angle 
of the training video frames that fall into the region.  By 
these angles the N regions are assigned to the N states in 
ascending order.  Next the µ’s of the M Gaussian densities 
in one of the N regions are found by LBG-VQ on the 
training vectors in that region.  The covariance U’s of the 
Gaussian densities are initialized as σI.

The next issue is to determine the facing angles of the 
states.  The state sequence { }Nsskq k

T
k ,,1)( 1 == =

 of a 

training face video is first estimated.  Given the ground 
truth sequence of the training video { }Tkkt k ,,1)( == θ ,
we want to find the association  

(1)

by minimizing the mean squared error,  

(2)

Then the least squares solution is proven to be  

(3)

for s =1,…,N, where Ts indicates all the time indices in the 
training video when q(k) = s.   

4. Experimental Evaluation and Analysis 
Evaluation of the head tracking and face orientation 

estimation is accomplished using an extensive array of 
indoor, outdoor, and mobile videos, as shown in Figure 8.  
In these test clips, the camera and subjects are fixed, so 
person tracking in Figure 1 is not needed and the perspec-
tive view of a subject is manually selected.  Figure 5 
shows some indoor face detection and tracking results.  It 
indicates that the multi-primitive face detection & tracking 
is very robust to extreme cases such as highly cluttered 
background, skin-tone object interference, and colored 
dim lighting in dark room.  The standard deviation of face 
alignment within the 64×64 face video after Kalman 
tracking is approximately 8 pixels.   

                      
Figure 5: Some results of the multi-primitive face detection 
and tracking.  Top row shows various backgrounds and 
lightings, middle row shows combined skin-color and edge 
detections, and lower row shows the cropped faces.  

The two face orientation estimation schemes are com-
pared using a mobile video of 2300 frames, where the 
ground truth facing angles are estimated manually frame 
by frame.  The video is processed twice to extract the 
training and testing face videos of the same length but of 
different face alignments, due to current hardship of 
obtaining ground truth.  We tried different combinations of 
N, M, D, and σ of the CDHMM for horizontal face 
orientation.  The transition length TrL (nonzero terms from 
the diagonal elements in the state transition matrix A) is 2 
and can be 3 to model faster face turn.  After trial phase, N
= 38, M = 1, D = 10, and σ = 1/2 seems to produce the 
minimum standard deviation of the estimates (12°) as in 
Figure 7.  Comparing to Figure 6, the ML-Kalman 
estimate with N = 38 VQ steps and D = 10 is more noisy 
and the standard deviation (19°) is higher.  Hence the 
CDHMM scheme is preferable.  The reason that the 
CDHMM approach works better is that it is a delayed
decision approach.  In the ML-Kalman case, ML decision 
is made before Kalman filtering and blocks useful cues.   

In the future we will collect more videos on diverse 
subjects and environments with a synchronized ground 
truth measuring device in order to enhance the CDHMM 
robustness.  Vertical face orientation can also be estimated 
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by another CDHMM.  Finally, LDA subspace can be used 
since it is more robust to illumination variations [2].   

Figure 6: ML-Kalman based horizontal face orientation 
estimation.  Left: Single-frame ML face orientation 
sequence.  Right: Kalman filtered sequence.  Solid line: 
Estimated face orientation; Dotted line: Ground truth value.  
Horizontal axis: Frame number; Vertical axis: Facing angle 
(-: facing right; 0: frontal; +: facing left).  N = 38, D = 10.

Figure 7: Horizontal face orientation estimation of the 
CDHMM scheme.  Solid line: Estimated face orientation; 
Dotted line: Ground truth.  CDHMM setup: N = 38, M = 1, D
= 10, TrL = 2, σ = 1/2.

5. Concluding Remarks 
In this paper we have presented an intelligent system 

for capturing humans to detect and track their faces.  Real-
time robust face detection and tracking is achieved by a 
multi-primitive closed-loop face analysis architecture.  

Novel algorithms to estimate face orientations using ML-
Kalman filtering and multi-state CDHMM models have 
been evaluated using a series of experimental studies.  
These experiments support the basic feasibility and 
promise of the multi-state approach.   
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Figure 8: Sample indoor and outdoor images from the test and training video sequences for face detection, tracking, and 
face orientation estimation.  Left to right: the source omni-videos, the unwarped panoramas, and human perspectives.   
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