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Abstract

This paper proposes a learning scheme based still im-
age super-resolution reconstruction algorithm. Super-
resolution reconstruction is proposed as a binary clas-
sification problem and can be solved by conditional class
probability estimation. Assuming the probability takes
the form of additive logistic regression function, Ad-
aBoost algorithm is used to predict the probability. Ex-
periments on face images validate the algorithm.

1 Introduction

Advances in technology have increased the need for
high-resolution images. However, due to physical con-
straints such as limited storage space, bandwidth, and
ubiquitous low resolution image sensors on handheld
devices, these needs cannot always be satisfied. In
super-resolution image reconstruction, high resolution
images are generated from lower-resolution samples,
thereby allowing higher resolution imagery to be used
in an increasing number of applications.

There are two main approaches to still image super-
resolution reconstruction: interpolation and statistical
learning methods. Traditional interpolation methods
such as bilinear interpolation suffer from over-smoothing
and hence are not visually satisfying. Statistical learn-
ing methods such as those proposed by [1, 2, 3, 4] use
prior statistical information to enhance the resolution
of images in a perceptually favorable manner. These
methods assume that images from the same category
bear certain similar statistics. By predicting the lost
information and fusing it back into the original low res-
olution image, the reconstructed image acquires more
detail. For example, the lost high-frequency compo-
nent can be predicted from the prior knowledge learned
from ground-truth high resolution images. Because the
learned components are correct only in the statistical
sense, the results are susceptible to aliasing.

In this paper, the super-resolution problem is fit
into the context of classical binary classification and
modeled as a conditional class probability estimation
problem. Assuming the insufficient resolution is a re-

sult of the intrinsic low-pass characteristics of the data
collection device, the conditional class probability is
used to determine the consistency between the given
low-resolution image and the estimated high-frequency
component. Greater probability implies more confi-
dence in the estimated high-frequency parts. AdaBoost
is used to estimate the probability with the assumption
that this probability lies in the logistic regression cat-
egory. Experimental results validate our algorithm.

The remain part of the paper is organized as follows:
in section 2, the algorithm and its theoretical basis are
presented. In section 3, experimental evaluation is pre-
sented to validate of the proposed algorithm. Section
4 concludes the paper.

2 Algorithm

2.1 Problem description

We assume that insufficient resolution are results
from lacking of high-frequency component. Therefore,
compensating the high-frequency component back will
enhance the resolution. Different from the Markov
Random Field (MRF) assumption in [1], in this paper,
still image super-resolution reconstruction is modeled
as a binary classification problem. Class conditional
probability is evaluated to predict the corresponding
high-frequency component.

Local regions from the same category of images ex-
hibit certain consistent statistics. For example, con-
ditional probability Pr(Xh

D|Xl) is highly predictable
from examples, where Xl is the low frequency part
of an image patch and Xh

D is the directional high-
frequency counterpart. We introduce a concept con-
sistency, which means the probability that a low fre-
quency feature Xl and high frequency features Xh

D are
from the same image region. Consistency relates the
super-resolution reconstruction problem with the bi-
nary classification language.

Suppose we have an image database with sufficient
high resolution. Randomly select image patches {Xi, i =
1, · · · , N} from the database. All Xi have two parts:
the low frequency part Xl

i and the directional high fre-
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quency counterpart:

[Xh
i,θ1

,Xh
i,θ2

, · · · ,Xh
i,θK

].

θk is the orientation index. We will talk more about it
later in this section. Then consistency represents the
following probability:

p(ci,k = 1|Xl
i,X

h
j,θk

),

where ci,k is an assigned class label. ci,k = 1 if Xl
i and

Xh
j,θk

are from the same image patch and ci,k = −1
otherwise. The given low resolution image are treated
as a set of incomplete testing examples {Yl

g}, with
the directional high frequency information missing. If
we can recover the most consistent directional high-
frequency components for every element in {Yl

g}, the
super-resolved image can be reconstructed.

The training sample set {(Yi,k, ci,k)} is constructed
as follows (i is the sample index, k is the orientation
index):

Yi,k = [Xl
i

T
,Xh

j,θk

T
]T, k = 1, · · · ,K; i = 1, · · · , N.

(1)
ci,k is the class label. Positive sample (ci,k = 1) means
low-frequency part Xl

t and corresponding directional
high-frequency part Xh

j,θk
are from the same image

patch (i = j). For negative samples, we require that
Xh

j,θk
has significant difference with the true corre-

sponding directional high-frequency component of Xl
i.

The training examples have two functions. First, it
is used to learn the prior knowledge about the consis-
tency ; Second, it is used as the candidacy dictionary D
for high frequency features.

The consistency between the given low frequency
feature Yl

g and a high frequency feature Xh
j,θk

from
the dictionary D is evaluated. The one that matches
best is the candidate of the lost high-frequency compo-
nent. Hence, the high-resolution image reconstruction
problem actually becomes a conditional class probabil-
ity estimation problem:

X̃h
g,θk

= arg max
Xh

m,θk
∈D

p(cg,k = 1|(Yl
g,X

h
m,θk

)), (2)

If assuming that the class conditional probability takes
logistic regression function form, AdaBoost actually
provide a way to evaluate the probability quantita-
tively.

The steerable pyramid method [5] is used to decom-
pose the image into low frequency component and di-
rectional high frequency components. Steerable pyra-
mids provide orientational localized basis filters, which
decompose high frequency components into different
orientations. In every orientation, the directional high

frequency component is estimated separately and there-
fore each component receives equal weight. As a result,
the high frequency component in the dominant orien-
tation cannot outweigh the weaker ones. For every set
of orientational high frequency components with orien-
tation θk, we construct a training sample set and the
most matching directional high frequency component
is learned.

2.2 AdaBoost for conditional class probability es-
timation

It is reasonable to assume the class conditional prob-
ability is modeled by logistic regression function:

p(c = 1|Y) =
eF (Y)

1 + eF (Y)
. (3)

It can also be written as:

log
p(c = 1|Y)

p(c = −1|Y)
= F (Y). (4)

For additive logistic regression model, we have F (Y) =∑M
m=1 fm(Y). In [6], the author shows that AdaBoost

algorithm is actually a stagewise estimation procedure
for fitting an additive logistic regression model. This
statement can be proved from the following two as-
pects. AdaBoost procedure finds an F (Y) that mini-
mize E{e−cF (Y)}; while E{e−cF (Y)} is minimized at:

F (Y) =
1
2

log
p(c = 1|Y)

p(c = −1|Y)
, (5)

which is unique with the logistic regression model up
to a factor of 2.

AdaBoost has become one of the most popular learn-
ing algorithms in the last decade or so. The most
attractive advantage is its simplicity and guaranteed
performance. Good performance can be achieved even
if the underlying weak learner is very simple. Also,
for separable data, the convergence can be guaranteed.
The main idea of AdaBoost is that training is focused
on hard examples. The following steps summarizes Ad-
aBoost:

1. Assign a set of weights D1(t), t = 1, · · · , T over
the training set, where T is the size of the training set.
Initially they are set equal for all examples.

2. For s = 1, · · · , S:

• Train weak learners by distribution Ds(t):

hs : {Yt} �→ {1,−1};

• Get weak hypothesis hs(Yt);
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• Choose the weight αs of the current weaker learner
hs according to its error rate εs

αs =
1
2

ln(
1 − εs

εs
),

with εs = Pri∼Ds
(hs(Yt) �= ct).

• Update Ds(t) to Ds+1(t). Normalize it by Zs so
that it is still a distribution.

Ds+1(t) =
Ds(t)e−αscths(t)

Zs
.

3. Final output is:

H(Y) = sign(F (Y)),

where:

F (Y) =
S∑

s=1

αshs.

Therefore, the class conditional probability is:

p(c = 1|Y) =
e2(

∑ S
s=1 αshs)

1 + e2(
∑ S

s=1 αshs)
. (6)

Since different regression models are trained individ-
ually for different orientation θk, there are K training
sample sets and K regression models in the total. The
training samples have high dimension. It will be com-
putational expensive to exploit these samples directly.
SVD is exploited on the low and orientational high fre-
quency components separately to decrease the dimen-
sion. The final super-resolution image is then become:

Ĩh = [Xl
g + β

K∑
k=1

X̃h
g,θk

]g=1,··· ,G, (7)

where β is the blending factor.

2.3 Blocky effect elimination

The above procedure will give a blocky high fre-
quency component estimation. Two additional steps
are taken to solve the problem. The first is the nor-
malization of the samples. All the training samples
are normalized to have norm of 1. Also the estimated
high-frequency component is rescaled according to its
low frequency counterpart. Second, overlapped patches
are used. For the overlapped pixels, there will be mul-
tiple estimates. The final estimate is obtained by the
following fusion procedure. Let the multiple estimates

be Sh = {xh
g,k(1), · · · , xh

g,k(P )}. The final estimation
is:

x̃h
g,k =




µg,k + bσg,k, if: xmax
g,k ≥ µg,k + bσg,k

µg,k − bσg,k, if: xmin
g,k ≤ µg,k − bσg,k

µg,k, otherwise
(8)

where:

µg,k =
1
P

P∑
p=1

xh
g,k(p);

σg,k =
1
P

√√√√
P∑

p=1

(xh
g,k(p) − µg,k)2;

xmax
g,k = max {xh

g,k(1), · · · , xh
g,k(P )};

xmin
g,k = min {xh

g,k(1), · · · , xh
g,k(P )};

and b is a parameter which shows the tolerance to the
variance. Normally we set b > 1.

3 Experimental evaluation

In this section, the proposed algorithm is evaluated
experimentally on face images. Face is an important
subject in many research fields and real applications.
Also, humans are perceptually sensitive to the details
on faces. The face database we used is from [7]. The
database is split into two parts. Part one is used as
the groundtruth high-resolution images. Images from
part two are down-sampled to half by half, blurred by
a 3× 3, σ = 0.6 Gaussian and then used as the testing
images. We use 15 × 15 image patch. Smaller patch
size will make the training procedure harder since less
structural information is preserved. We use 8 orien-
tations for the high frequency components. For every
training set (at orientation θk), there are 20000 exam-
ples. 5000 positive samples and 5000 negative samples
are used for training and the remaining 10000 samples
are used for testing. Stump [8] is used as the basic
weak learners for AdaBoost. Fig.1 gives the the test-
ing error rate with the iteration times (θk = 0◦). 20000
iterations are used and hence 20000 weak hypotheses
altogether. It shows that the procedure converges fast
and consistently, which means the samples constructed
in this manner have good separation.

Images from both parts of the database are tested for
performance. Same down-sample and blurring proce-
dure is applied on all test images. Bicubic spline inter-
polated images are used as the low-frequency input for
our algorithm. Experimental example from first part of
the database is shown in Fig.2. Example from the sec-
ond part of the database is shown in Fig.3. Fig.2(a) and
Fig.3(a) are the original images. Fig.2(b) and fig.3(b)
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Figure 1. Testing error rate from AdaBoost for θk =
0◦. The horizontal axis are the iteration times. The
vertical axis are the error rates.

are results from bicubic spline interpolation. Fig.2(c)
and fig.3(c) are results from the proposed algorithm.
Fig.2(d) and fig.3(d) are the estimated high frequency
components. Results validate that the proposed algo-
rithm is perceptually favorable since more details are
present. However, there is still more work to be done
to preserve the brightness of the images.

(a) (b) (c) (d)

Figure 2. Example from the first part of the
database. (a): Original high-resolution image; (b):
High resolution image from bicubic spline interpola-
tion; (c): High-resolution image from the proposed
algorithm; (d): Learnt high frequency component.

4 Conclusion

In this paper, a super-resolution reconstruction algo-
rithm for still images is proposed. By fitting the super-
resolution reconstruction problem into the binary clas-
sification context, this problem is solved by class con-

(a) (b) (c) (d)

Figure 3. Example from the second part of the
database. (a): Original high-resolution image; (b):
High resolution image from bicubic spline interpola-
tion; (c): High-resolution image from the proposed
algorithm; (d): Learnt high frequency component.

ditional probability estimation. Using the assumption
that the probability taking a logistic regression func-
tion form, AdaBoost algorithm can be used to predict
the probability. Experiments on face images validate
the algorithm.
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