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Abstract

This paper proposes a video-based high-frequency com-
ponent compensation (HFCC) super-resolution algorithm.
The lost high-frequency information is estimated by lo-
cal MAP criteria, using the registered frames. By com-
pensating the high frequency component iteratively, the
high-resolution images are recovered. The algorithm has
lower computational cost than the alternatives. Exper-
imental evaluation verified the usefulness of the algo-
rithm.

1 Introduction

Recently there has been considerable interests in high
resolution video reconstruction. In general, existing
video super-resolution algorithms can be classified into
three categories: frequency domain algorithms [1]; spa-
tial domain algorithms from image generative degrad-
ing model; interpolation methods. Frequency domain
algorithms are limited by the underlying global trans-
lation motion assumption. Real world videos usually
have multiple rigid motions as well as non-rigid motion.
For such cases the performance will deteriorate. Spa-
tial domain approaches are motivated from the gener-
ative degrading model of low resolution videos. Super-
resolution reconstruction is modeled as an inverse prob-
lem of this generative model. The essential ill-condition
has inspired many efforts in providing different priors
as for solution [2, 3, 4]. Yet the performance is limited
by the consistency between the prior and the data. For
interpolation methods, registered low-resolution images
are mapped onto a unique non-uniform high-resolution
grid [5]. Interpolation is used to get the high-resolution
image residing on the corresponding uniform grid. How-
ever, aliasing is a problem for such approaches.

The human face is different from other popular sub-
jects in computer vision area due to its essential non-
planarity and non-rigidity. In this paper, a novel algo-
rithm is presented for human face video super-resolution
reconstruction. High-resolution frames are reconstructed
by high-frequency component compensation (HFCC).
Experiments on substantive face videos verified its use-

fulness.
The paper is organized as follows. Section 2 presents

the proposed super-resolution algorithm. In section 3,
experimental results and comparisons are reported. Sec-
tion 4 concludes the paper. In the following discussion,
all the frames are registered.

2 Algorithm design

Fig. 1 shows the flowchart of the algorithm. The
procedure is realized iteratively. Let the t-th original
high-resolution frames be Ih,t and its k-th estimate be
Ik
h,t. Ik

h,t is a smoothed version of Ih,t: Ik
h,t = hk

t ∗
Ih,t, where hk

t is the blurring function for the current
estimate. The estimation error is εt = Ih,t − Ik

h,t Since
true Ih,t is unknown, the estimate εk

t = Ik
h,t − hk

t ∗ Ik
h,t

is used instead. Compensate it back to the estimate of
the high resolution image, we can refine it as:

Ik+1
h,t = Ik

h,t + εk
t . (1)

This iteration equation is our basis for reconstruct Ih,t.
In the proposed algorithm, hk

t ∗Ik
h,t is predicted without

explicitly computing hk
t .

Suppose every pixel on the original low-resolution
grid will be projected onto a q × q grid of the high-
resolution image domain. Different from [2, 3], we as-
sume the point spread function (PSF) is unknown (which
is more general for real data) and PSF is non-uniform.
The degrading model of the low resolution images is:

Il,t(xi) =
q−1∑
m=0

q−1∑
n=0

ft(xi,m,n) × Ih,t(xi,m,n), (2)

ft shows the pixel weight in the q × q grid of the origi-
nal high-resolution image. We refer to it as local point
spread function (local PSF). The blurring function hk

t

is closely related with the estimation of ft. Later in this
section, we will see that hk

t ∗Ik
h,t is inferred heuristically

from ft.
This degrading model is solved directly in a simpli-

fied way. The current estimate Ik
h,t should also satisfy

the degrading model from the MSE sense. Therefore:
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Figure 1. The flowchart of the algorithm. (All frames are registered.)

Il,t(xi) |=
q−1∑
m=0

q−1∑
n=0

ft(xi;m,n) × Ik
h,t(xi;m,n). (3)

It is reasonable to assume that the local PSF keeps un-
changed for successive 2p + 1 frames. Let q × q matrix
fk
t (xi) = [fk

t (xi;m,n)]q×q be the local PSF on the cur-
rent q × q grid. k is the iteration index. The optimal
function for estimating ft on the current q × q grid is:

J (fk
t (xi))

=
p∑

t=−p

(Il,t(xi) −
q−1∑
m=0

q−1∑
n=0

fk
t (xi;m,n)Ik

h,t(xi;m,n))2

+λ∇fk
t (xi), (4)

s.t. : ‖fk
t (xi)‖1 = 1;

where:

∇fk
t (xi) = ‖∂xfk

t ‖2 + ‖∂yfk
t ‖2 + ‖∂xyfk

t ‖2 + ‖∂yxfk
t ‖2.

The first term of J (fk
t (xi)) boosts ft(xi) as an im-

pulse function with non-zero at the pixel most similar
to the known low-resolution pixel. The second term is a
smoothing term which keeps the local PSF as uniform as
possible. A simplified solution is provided for equation
4, which is a direct trade-off between these two terms.
We choose a uniform function as the initial values for
fk
t (xi), and apply one-step steepest descendent update

as follows:

f̃k
t (xi;r,l) =

∑p
t=−p{Il,t(xi) − St;r,l}∑p

t=−p Ik
h,t(xi;r,l)

, (5)

St;r,l =
1
q2

q−1∑
m=0;m �=r

q−1∑
n=0;n�=l

Ik
h,t(xi;m,n);

The optimal local PSF for current q × q grid at kth
iteration is the obtained from the normalization:

(fk
t (xi;r,l))� =

f̃k
t (xi;r,l)

‖[f̃k
t (xi;m,n)]q×q‖1

;

(a) (b) (c)

(d) (e)

Figure 2. (a): initial input of the current frame.
(b):estimated local point spread function after 1st iter-
ation. (c): estimated high-frequency components after
1st iteration. (d): reconstructed high-resolution image
after 1st iteration. It is also the input for the 2nd it-
eration. (e): final high-resolution reconstruction after
3 iterations.

0 ≤ r ≤ q − 1, 0 ≤ l ≤ q − 1.

Now we relate (fk
t )� with the estimation of hk

t ∗ Ik
h,t.

Equation 3 can also be written as:

Il,t(xi) |=
q∑

m=1

q∑
n=1

ft(xi;m,n) × (hk
t ∗ Ih,t)(xi;m,n) (6)

It’s clear that hk
t and fk

t are reciprocally related. For
simplification, assume hk

t has a limited support of 3×3.
Then at every pixel, the smoothed output of hk

t ∗ Ik
h,t is

determined jointly by the intensity and the local PSF
of its eight neighborhood. Model the distribution of
(hk

t ∗ Ik
h,t)(xi;m,n) by the following Gaussian mixture:

Pr((hk
t ∗ Ik

h,t)(xi;m,n)|{Ik
h,t(xi;m,n,j)}j=1,···,8)

∼
8∑

j=1

wi,m,n,jN (Ik
h,t(xi;m,n,j); d2

j ); (7)

where xi;m,n,j(j = 1, · · · , 8) are pixel xi;m,n’s eight neigh-
boring pixels; dj (=1 or

√
2) is the Euclidean distance

between pixel xi;m,n and its neighbor xi;m,n,j . This
model actually describes a low-pass procedure charac-
terized by the mixing factor wi;m,n,j . The filtered pixel
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value (hk
t ∗ Ik

h,t)(xi;m,n) will be as similar as its neigh-
borhood with confidence wi;m,n,j . This confidence is
critical since it incorporates the prior knowledge about
hk

t : the reciprocal relationship between hk
t and fk

t . We
use the following heuristic function to model it:

wi;m,n,j = exp{−b2
j ((ft(xi;m,n))�)2}, (8)

where bj is xi;m,n,j ’s bias from its mean value over the
successive p frames: bj = xi;m,n,j − x̄i;m,n,j . bj assures
that less weight be given to pixels with large deviations,
which are most likely outliers.

Therefore, (hk
t ∗ Ik

h,t)(xi;m,n) is the solution of:

arg max
y�

F (y�),

where:F (y�) =
∑8

j=1 wi;m,n,j exp {− (y�−Ik
h,t(xi;m,n,j))

2

2d2
j

}.
This is actually a local MAP estimation. Steepest de-
scendent algorithm is used to solve it. Denote (hk

t ∗Ik
h,t)

as Z. Steepest descendant algorithm gives:

Z(r+1)(xi;m,n) = Z(r)(xi;m,n) + µdf (9)

df = − ∂

∂x�
F (x�)|Z(r)(xi;m,n)

=
8∑

i=1

w(xi;m,n,j)(Ik
h,t(xi;m,n,j) − Z(r)(xi;m,n))

d2
j

exp{− (Z(r)(xi;m,n) − Ik
h,t(xi;m,n,j))2

2d2
j

} (10)

The entire procedure is repeated. In this way, the
high-resolution videos are recovered. Fig. 2 give an ex-
ample of one iteration. Initial input of the algorithm are
bilinear interpolation of the (2p + 1) successive frames
(here p = 2, q = 2). In our experiment, the iteration
times are all set to 3. When k = 3, the dynamic range of
the obtained high-frequency component has been small
enough.

3 Experimental evaluation

3.1 Videos under different settings

In this section we show experimental results from se-
quences with different content and sensors.
1. Videos with changing facial expressions. Sub-
tle changes in facial expressions that could be lost in low
resolution or blurred sequences are enhanced. Fig. 3(a)
and 3(b) shows results of HFCC algorithm compared to
those generated by bilinear interpolation. It is apparent
that the bilinear interpolation results in Fig. 3(a) are
severely blurred, whereas HFCC algorithm generates
significantly clearer facial features, shown in Fig. 3(b).
2. Videos with large head motions. In Fig. 3(c)

facial1blur.bmp facial2blur.bmp facial3blur.bmp

(a)
facial1sup.bmp facial2sup.bmp facial3sup.bmp

(b)
motion2Low.bmp motion2Simon.bmp motion2sup.bmp

(c)

(d)

Figure 3. Examples of the experimental results.
3(a): bilinear interpolated high-resolution frames.
3(b): corresponding super-resolved results from the
HFCC algorithm. In 3(c): example from sequence
with large head motion. Leftmost: the original im-
age. Middle: result from [5]. It is a problematic
frame for [5]. Rightmost: corresponding result from
the HFCC algorithm. The original video in 3(c) is
the courtesy of Dr. Baker [5]. 3(d): example from
omni-directional face video. Left: the input; right:
the super-resolved result.

we compare our results with the super-resolution op-
tical flow algorithm from [5] using the same video se-
quence from Dr. Baker. Our experiments show bet-
ter performance in certain frames that are problematic
for [5]. Specifically, super-resolution optical flow is vul-
nerable to artifacts, while HFCC algorithm successfully
augments the original image with more perceptually ap-
pealing results.
3. Videos from an omni-directional camera. Omni-
directional video cameras are widely used for their 360
degree field of view [6, 7]. However, images from these
cameras are typically low resolution and suffer from
non-uniform distortion across the image. Our HFCC
algorithm can be used to enhance the video quality, as
shown in Fig. 3(d).

3.2 Quantitative comparison
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Original

Figure 4. PSNR of different algorithms.

We compare the results of our HFCC algorithm with
[2] and [3] using high resolution face videos from [8].
The videos contain substantive facial expressions from
various subjects. We use sub-sampled video frames as
the input. The original video sequences are used as the
ground-truth for comparison. Examples of the percep-
tual results are shown in Fig. 4. Due to legal issues, only
the lip patches are shown. Qualitatively, more details
are resolved by our algorithm and Borman’s algorithm
than Zomet’s IBP algorithms. However, Borman’s al-
gorithm produces blobby images that are perceptually
unappealing. The examples in [4] also exhibit the same
problems, possibly due to the Huber function prior used
leading to excessive constraints on the high frequency
components. The PSNR is computed for each algorithm
on a frame-by-frame basis. Fig. 4 shows the PSNR curve
for the first video sequence in the database. The mean
PSNR over all frames is computed and displayed as well.
It indicates that our HFCC algorithm exhibits the least
distortion. Overall, these quantitative comparative re-
sults show the effectiveness of the proposed HFCC algo-
rithm. Also, this algorithm has a lower computational
cost than the others.

4 Conclusion
Due to the non-rigidity and non-planarity character-

istics of face subject, a lot of existing high-resolution al-
gorithms are not applicable for face video high-resolution
reconstruction. This paper proposed a video based super-
resolution algorithm based on high frequency compo-
nent compensation. The lost high-frequency informa-
tion is estimated by local MAP criteria, using the regis-
tered frames. By compensating the lost high-frequency
information, the high-resolution frames are recovered.
The computational cost for the algorithm is much lower
than the alternatives. Also, although the start point for
the algorithm is for face subjects, the algorithm is not
limited to faces. One drawback of the high frequency
compensation algorithm is that the overall brightness of

the image may be altered. We are currently exploring
ways to resolve this issue. Also, we are working on com-
bining this promising algorithm with omni-directional
face recognition [9] to get a better recognition rate.
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