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Abstract 
Omni-directional cameras which give 360 degree 
panoramic view of the surroundings have recently been 
used in many applications such as robotics, navigation 
and surveillance. This paper describes the application 
of motion estimation on omni camera to perform sur- 
round analysis using an automobile mounted camera. 
The system detects and tracks the surrounding vehicles 
by compensating the ego-motion and detecting objects 
having independent motion. Prior knowledge about 
ego-motion and calibration is optimally combined with the 
information from the image gradients to get better motion 
compensation. 

1 Introduction 
A vehicle surround analysis system that monitoring the 
presence of other vehicles in all directions is important for 
on-line as well as off-line applications. On-line systems 
are useful for intelligent driver support. On the other hand, 
off-line processing of video sequences is useful for study 
of behavioral patterns of the driver in order to develop bet- 
ter tools for driver assistance. However, since on-line sys- 
tems have stringent requirements on camera placement and 
algorithm speed, we are currently working on off-line pro- 
cessing to develop robust algorithms, and then optimize the 
efficiency and camera placement to get on-line systems. 
Omni-directional cameras give a 360 degree field of view 
of the surroundings and have been recently used in many 
applications [3]. Use of omni cameras from moving plat- 
forms is particularly interesting, since motion estimation 
ambiguities which exist with narrow field of view cam- 
eras are reduced. This paper explores the use of omni- 
directional cameras for complete surround analysis from a 
vehicle test platform. The system detects and tracks other 
vehicles and separates them from extraneous features such 
as road marks and shadows. 
The current emphasis is on developing an off-line system 
which analyzes video sequences obtained from test runs in 
order to study the driver behavior patterns. To get full 360 
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degree surround view with least amount of FOV occupied 
by the car itself, a specially designed fixture was used to 
mount the camera two feet above the roof of the car. The 
vehicle test platform mounted with omni-directional cam- 
era for is shown in Figure 1 (a). A typical image from the 
camera is shown in Figure 1 (b). It is seen that the cam- 
era covers a 360 degrees field of view around its center. 
However, such a fixture would not be suitable for on-line 
systems, hence alternative camera placements are being ex- 
plored. 
For example, in our earlier work [lo], we had used omni 
cameras mounted inside the car and on vehicle side in or- 
der to get the view of both inside and outside of the car. 
Figure l(c) shows the camera mounted inside the car. This 
configuration could simultaneously capture the driver face, 
as well as the surroundings. The face pose of the driver 
was analyzed and the view where the driver is looking was 
generated from the same camera. For side surround, con- 
figuration in Figure 1 (d) was more suitable, but the driver’s 
view was less clear. Preliminary res.ults of vehicle detec- 
tion on this configuration were described in [lo]. However, 
only one side of the car could be observed, and the car itself 
covered a large part of FOV. 

1.1 Previous Work 
Motion analysis has been used to separate ego-motion of 
the background and detect obstacles. Motion-compensated 
difference images were used for obstacle detection by [4]. 
Robust real time motion compensation for ground plane is 
also described in [14]. In [5], a system for video-based 
driver assistance involving lane and obstacle detection us- 
ing rectilinear camera is described. 
Motion estimation from moving omni cameras has recently 
been a topic of great interest. As noted by Gluckman and 
Nayar [8], omni cameras alleviate the motion ambiguity 
problems commonly encountered wi1.h narrow field of view 
cameras. Ego-motion of a moving platform is usually de- 
termined by projecting the image motion on a spherical [8] 
surface using Jacobians of transforrnations. Shakernia et 
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(c) ( 4  

Figure 1: (a) Vehicle Test Platform with omni camera 
mounted two feet above the roof using a specially designed 
fixture. (b) Omni-directional image acquired the camera. 
(c) and (d) Image from omni-camera mounted inside the 
car and on side of the car respectively. 

al. [15] use the concept of back-projection flow, where the 
image motion is projected to a virtual curved surface in 
place of spherical surface and make the Jacobians of trans- 
formation simpler. 
Parametric motion estimation based on image gradients, 
also known as the "direct method" has been used for rec- 
tilinear cameras in for planar motion estimation, obstacle 
detection and motion segmentation [12, 131. The advan- 
tage of the direct methods is that they can use motion infor- 
mation not only from comer-like features, but also edges, 
which are usually more numerous in an image. The direct 
estimation approach was generalized in [7, 101 for motion 
compensation using omni cameras, where parameters of 
planar homography are estimated. A modification of that 
approach is used here with the omni camera mounted on an 
automobile to detect nearby vehicles and generate a com- 
plete surround view showing the position and tracks of the 
vehicles. 

2 Vehicle Surround Analysis System 
The block diagram of the surround analysis system is 
shown in Figure 2. The initial estimates of the the road 
plane motion parameters are obtained using the approxi- 
mate knowledge about the camera calibration and speed. 
Using these parameters, one of the frames is warped to- 
wards another to compensate the motion of the ground 
plane. However, the motion of features having independent 

motion or height above the ground plane is not fully com- 
pensated. To detect these features, the normalized image 
difference between the two images is computed using tem- 
poral and spatial gradients. Morphological and other post- 
processing is performed to further suppress the ground fea- 
tures due to any residual motion and get the positions of 
the objects. The detected objects are then tracked over 
frames. To account for the inaccuracy in prior knowledge 
of ego-motion, the parameters are iteratively corrected us- 
ing the spatial and temporal gradients of the motion com- 
pensated images using optical flow constraint in coarse to 
fine framework. The motion information contained in these 
gradients is optimally combined with the prior knowledge 
of motion parameters using a Bayesian framework similar 
to [14]. Robust estimation is used to separate the ground 
plane features from other features. 

Omni-Video Stream I 1  El 
Calibration 

Transform 

Motion 

Gradients Correction 
I 

Difference 

Event 
Positions 

Figure 2: Block diagram for event detection and recording 
system based on ego-motion compensation from a moving 
platform. 

3 Motion Estimation from Omni Camera 
The omni-directional camera used in this work consists of 
a hyperbolic mirror and a camera placed on its axis. It be- 
longs to a class of cameras known as central panoramic 
catadioptric cameras [3]. These cameras have a single 
viewpoint that permits the image to be suitably trans- 
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formed to obtain perspective views. To compensate the 
motion of the omni-directional camera, the omni transfor- 
mation is combined with that due to motion. 

3.1 Planar Motion Transformation 
The motion of the road is modeled as a planar surface. Let 
Pa and Pb denote the perspective transforms of a point on 
the ground plane in the homogenous coordinate systems 
corresponding to two positions A and B of the moving cam- 
era. Th-en, Pa and P b  are related by a projective transform: 

where H is the homography matrix expressed in terms of 
rotation matrix R, translation vector D, and plane normal 
vector K. 
Let C denote a nominal camera coordinate system, based 
on the known camera calibration. The actual camera sys- 
tem at any given time is assumed to have small rotation 
w.r.t. this system due to vibrations. Use of nominal system 
allows one to treat small rotations as angular displacement 
vectors. The ego-motion state is then expressed as: 

where V is the camera linear velocity, W is the angular 
velocity, and angular displacement between nominal and 
actual camera system is A, all expressed in nominal camera 
system. The homography matrix H can be approximately 
expressed in terms of V, W,A as shown in Table 1. 

3.2 Flat plane transformation 
The geometry of a hyperbolic omni-directional camera is 
shown in Figure 3. According to the mirror geometry, a the 
light ray from the object towards the viewpoint at the first 
focus 0 is reflected so that it passes through the second 
focus, where a conventional rectilinear camera is placed. 
Let P = ( X , Y , Z ) T  denote the homogenous coordinates of 
the perspective transform of any 3-D point hP on ray OP, 
where h is  the scale factor depending on the distance of the 
3-D point from the origin. It can be shown [l, 11, 151 that 
the reflection in mirror gives the point (-x, - Y ) ~  on the 
image plane of the camera using the flat-plane transform 

The pixel coordinates ( u , v ) ~  are then obtained by using 
the calibration matrix of the conventional camera. 
For performing motion compensation using omni- 
directional cameras, the motion transforms are combined 
with the flat-plane transform as in [7] to warp every point 
in image B towards image A .  

Hyperboloid 

Mirror intersection Y 

Figure 3: Omni-directional camera geometry. 

3.3 Estimation 
To estimate the ego-motion parameters, the paramet- 
ric image motion is substituted into the optical flow 
constraint[9] : 

where gu,gv are spatial gradients, and g, is the temporal 
gradient. Since the image motion (Au,Av) at each point i 
can be represented as a function of the incremental state 
vector Ax, the optical flow constraint (4) for image points 
1 ... N can be expressed as: 

( 5 )  

guAu + gvAv + g, 0 (4) 

AZ = c(Ax) + v E CAX + v 

where 

(g& + &AV) 1 k r > l  

c(Ax)= ( i ) , A z = -  ( ; ) (6) 

and v is the vector of measurement noise in the time gradi- 
ents, and C = &/ax is the Jacobian matrix computed using 
chain rule as in [7]. The function c(x) is a non-linear. The 
i fh  row of its the Jacobian is given by the chain rule: The 
function C(X) is a non-linear. The izh row of its the Jacobian 
is given by the chain rule: 

(guAu + gvAv)N (gt )N 

) (7) 
c.-  - = ac awb apb apb ah 

i-(:) ( dwb a p b  a.& ah ax j 

W h e r e P b = ( X b , Y b , Z b ) T , P b = ( x b , y b ' ) T  andwb=(ub,vb)T 
are the coordinates of the point in the camera, image, and 
pixel coordinate systems for camera position B, and h is 
the vector of elements of H.  The individual Jacobians are 
computed similar to [7]. The relationship between these 
variables, and their Jacobians are shown in Table 1. 
Since the points having very low texture do not contribute 
much to the estimation of motion parameters, only those 
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H =  ( ii iz ti ) 
hs h9 

Table 1: Chain of functions and Jacobians leading from state vector x to optical flow constraint c. 

H = R+DK' aH=aR+aD.KT+D(JK)'  

J R  = aw,m 

av fav,  = e, ,  aw,/Jw, = aA,/aA, = (e,)x 

JD= (Z-WxAt-Ax)AtJV - (JWxAt+aAx)VAt 
a K =  -Ax& 

R N Z - W ~ A ~  
Drr [ I -A , ]VAt  
K N [Z-Ax]& 

image points having gradient magnitude above a threshold 
value are selected for performing estimation. Alternatively, 
a non-maximal suppression is performed on the image gra- 
dients, and the image points with local maxima are used. 
This way, instead of computing Jacobians using multiple 
image transforms over the entire image, the Jacobians are 
computed only at the selected points which have significant 
information for estimating parameters. 
The estimates of the state x and its covariance P are itera- 
tively updated using the measurement update equations of 
the iterated extended Kalman filter [2], 

P t  [CTR-'C+PI1]-' (8)  

% +- f+M = % + P  [CTR-'Az- PI'(% -.-)I (9) 

However, the optical flow constraint equation is satisfied 
only for small image displacements up to 1 or 2 pixels. To 
estimate larger motions, a coarse to fine pyramidal frame- 
work [16] is used. Also, the estimation process is highly 
sensitive to the presence of outliers, i.e. points not satisfy- 
ing the ground motion model. A region of interest of road 
is determined using calibration information, and the pro- 
cessing is done only in that region to avoid as many extra- 
neous features as possible. To reduce the effect of outliers, 
Robust-M estimation [6] is used to reduce the effect of out- 
liers by iteratively reweighting the contribution of samples 
according to their error residuals. 

4 Vehicle Detection and Tracking 
After motion compensation, the features on the road plane 
would be aligned between the two frames, whereas those 
due to obstacles would be misaligned. Image difference 
between the frames would therefore enhance the obstacles, 
and suppress the road features. To reduce the dependence 
on local texture, the normalized frame difference [17] is 

used. This is given at each pixel by: 

k r  m) 
k +  (24 +g3 

where gu,gv are spatial gradients, and gr is the tempo- 
ral gradient after motion compensation, and (.) denotes a 
Gaussian weighted averaging performed over a K x K 
neighborhood of each pixel. In fact, the normalized differ- 
ence is a smoothed version of the normal optical flow, and 
hence depends on the amount of motion near the point. 
Due to untextured interior of a vehicle, blobs are usually 
detected at the sides of the vehicle. To get the full ve- 
hicle, it is assumed that if two blobs are within a thresh- 
old distance (5.0 meters) in the direction of car's motion, 
they constitute a vehicle. To detect this situation, the orig- 
inal image is unwarped using the flat plane transform, and 
a morphological closing is performed on the transformed 
image using a 1 x N vertical mask. 
After the blobs corresponding to moving objects are identi- 
fied, nearby blobs are clustered and tracked over frames us- 
ing Kalman filter [2]. The points on the blob that are near- 
est to the camera center usually correspond to the ground 
plane, and are marked as obstacle map. The vehicle po- 
sition on the road is computed by projecting the track lo- 
cation on the obstacle map. Since the obstacle map is as- 
sumed to be on ground plane, the location of the vehicle 
can be obtained by inverse perspective transform. 

5 Experimental Results 
The vehicle detection approach was applied to an omni 
camera mounted on an automobile test-bed used for intel- 
ligent vehicle research. The test-bed is instrumented with a 
number of cameras and computers to capture synchronized 
video of the surroundings. In addition, the CAN bus of 
the vehicle gives information on vehicle speed, pedal and 
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brake positions, radar, etc. The vehicle was driven with a 
speed up to 65 miles per hour. The actual vehicle speed, 
obtained from CAN bus was used for initial motion esti- 
mate. A video sequence of 36000 frames (20 minutes) was 
processed and vehicles on both sides of the car were de- 
tected as shown in Figure 4. The flat plane transform was 
applied to the omni image to perform surround analysis. 
Figure 5 (a), (b) shows the detection of moving vehicles 
in different road conditions. Figure 5 (c) shows the plots 
of track positions against time for a segment of the video. 
The algorithm was also applied to a video sequence from 
an omni camera mounted on the side of the vehicle as in 
[lo]. Figure 6 shows the result of the detection algorithm. 
Note that the outside view covers only one side of the car, 
whereas a large part is occupied by the car itself and its 
driver. 

Figure 4: (a) Image from a sequence using omni camera 
mounted on a moving car with estimated parametric mo- 
tion of ground plane. (b) Classification of points into in- 
liers (gray), outliers (white), and unused (black). (c) Nor- 
malized difference between motion-compensated images. 
(d) Detection and tracking of moving vehicles marked with 
track id and the coordinates in road plane. (e) Surround 
view generated by dewarping omni image. 

Figure 5:  Surround analysis in different situations with the 
top mounted camera: (a) City road (b) Freeway (c) Plot 
of the longitudinal position of vehicle tracks against time. 
The tracks are color coded as red, yellow and green accord- 
ing to increasing lateral distance from the ego-vehicle. 

Figure 6: (a) Detection of a moving vehicle from a side 
mounted omni camera. (b) Surround view generated by 
dewarping the omni image. 
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6 Summary 
This paper described a system to generate a 360 degree sur- 
round view using an omni-directional camera mounted on 
an automobile. The system detects and tracks vehicles by 
estimating and compensating the ego-motion of the road 
surface. For motion estimation, the planar motion trans- 
form is combined with the omni camera transform, and op- 
tical flow constraint is used to optimally combine the prior 
knowledge of ego-motion parameters with the information 
in the image. Experimental results demonstrate the vehicle 
detection in two configurations. The top mounted camera 
configuration was optimized for monitoring the entire sur- 
round for off-line studies of driver behavior. On the other 
hand, the side mounted configuration with some modifica- 
tions in camera placement may be useful for monitoring 
the driver as well as the driver’s side surround. The latter 
may also be more suitable for realistic placement in se- 
ries cars. The current implementation operates at about 3 
frames per second on a Pentium 4 system, hence suitable 
for use in off-line processing of video sequences, but algo- 
rithm optimization may yield better speeds. 
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