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Abstract. Subspace analysis has been widely used for head pose esti-
mation. However, such techniques are usually sensitive to data alignment
and background noise. In this paper a two-stage approach is proposed to
address this issue by combining the subspace analysis together with the
topography method. The first stage is based on the subspace analysis of
Gabor wavelets responses. Different subspace techniques were compared
for better exploring the underlying data structure. Nearest prototype
matching using Euclidean distance was used to get the pose estimate.
The single pose estimated was relaxed to a subset of poses around it to
incorporate certain tolerance to data alignment and background noise.
In the second stage, the uncertainty is eliminated by analyzing finer
geometrical structure details captured by bunch graphs. This coarse-to-
fine framework was evaluated with a large data set. We examined 86
poses, with the pan angle spanning from −90o to 90o and the tilt an-
gle spanning from −60o to 45o. The experimental results indicate that
the integrated approach has a remarkably better performance than using
subspace analysis alone.

1 Motivation and Background

Head pose can be used for analyzing subjects’ focus of attention in
”smart” environment [1][2][3]. Head pose is determined by the pan angel
β and the tilt angle α, as shown in the right image of Fig. 1. For ap-
plications in driver assistance systems, accuracy and robustness of the
head pose estimation modular is of critical importance [3]. Besides focus
analysis, head pose estimation is also a very useful front-end process-
ing for multi-view human face analysis. The accurate pose estimate can
provide necessary information to reconstruct the frontal view face for
a better facial expression recognition [4]. Pose estimation can also help
select the best view-model for detection and recognition [5][6].
Over the past several years, head pose estimation has been an active area
of research. If there are multiple images available, pose position in the
3D space can be recovered using the face geometry. The input could be
video sequences [3][4][7][8] as well as multi-camera output [9][10]. Follow-
ing techniques have been proposed: feature tracking, including tracking
the local salient features [4][8] or the geometric features [3][7]; studying
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the joint statistical property of image intensity and the depth informa-
tion [9][10]. With only static images available, the 2D pose estimation
problem has presented a different challenge. Pose can only be determined
in certain degrees of freedom (DOF), instead of the full 6 DOF as the 3D
one does. 2D pose estimation can be used as the front-end for multi-view
face analysis [5][11]; as well as to provide the initial reference frame for 3D
head pose tracking. In [12], the author investigated the dissimilarity be-
tween poses by using some specific filters such as Gabor filters and PCA.
This study indicates that identity-independent pose can be discriminated
by prototype matching with suitable filters. Some efforts have been put
to investigate the 2D pose estimation problem [5][6][11][13][14] and they
are mainly focused on the use of statistical learning techniques, such as
SVC in [5], KPCA in [11], multi-view eigen-space in [14], eigen-space
from best Gabor filter in [13], manifold learning in [6] etc. All these

Fig. 1. Illustration of head pose estimation in focus analysis.

algorithms are based on the features from entire faces. Although the
identity information can be well-suppressed, one main drawback of such
techniques is that they are sensitive to the face alignment, background
and scale. Some researchers also explored the problem by utilizing the
geometric structure constrained by representative local features [15, 16].
In [15], the authors extended the bunch graph work from [17] to pose
estimation. The technique provides the idea to incorporate the geomet-
ric configuration for the 2D head pose estimation. However, the study is
only based on 5 well-separated poses. The other poses not included can
be categorized into these 5 poses by extensive elastic searching. Although
this benefits the multi-view face recognition problem, it is not suitable
for head pose estimation in a fine scale, since the elastic searching intro-
duces ambiguity between similar poses. In [16], Gabor wavelets network,
or GWN, which is constructed from the Gabor wavelets of local facial
features, was used to estimate the head pose. One drawback is that it
requires selected facial features to be visible, hence not suitable for head
pose estimation with wide angle changes.

In this paper, our aim is to get a robust identity independent pose es-
timator over a wide range of angles. We propose a two-stage framework
which combines the statistical subspace analysis together with the geo-
metric structure analysis for more robustness. The main issue we want to



solve is the robustness to data alignment and background. More details
are discussed below.

2 Algorithm Framework

The proposed solution is a two-stage scheme in a coarse-to-fine fashion.
In the first stage, we use subspace analysis in a Gabor wavelet transform
space. Our study indicates that statistical subspace analysis is insuffi-
cient to deal with data misalignment and background noise, however,
the noise does not drive the estimate far from its true value. Therefore,
we can assume that the true pose locates in a subset of p× p neighbor-
ing poses around the estimate with a high accuracy. We use the subset
of poses as the output from the first stage. This is similar to a fuzzy
decision. The first-stage accuracy is evaluated accordingly: if the true
pose locates in the p × p subset around the estimate, the estimate is
determined as a correct one. Since geometric structure of the local facial
features has the ability to provide the necessary detail for a finer pose
assessment, in the second stage, we use a structural landmark analysis
in the transform domain to refine the estimate. More specifically, we use
a revised version of the face bunch graph [17]. The diagrams in Fig. 2
outline this algorithm.

To get a comprehensive view of the underlying data structure, we study
four popular subspaces so that the best subspace descriptors can be
found: Principle Component Analysis (PCA) [18]; Kernel Principle Com-
ponent Analysis (KPCA) [19]; Multiple class Discriminant Analysis (MDA)
[18] and Kernel Discriminant Analysis (KDA) [20, 21]. Results show that
analysis in the kernel space can provide a better performance. Also, dis-
criminant analysis is slightly better than PCA (please refer to Table 1).

To refine the estimate from the first-stage, semi-rigid bunch graph is
used. Different from the face recognition task solved in [17], we only
need to recover the identity-independent head pose. In [17], an exhaustive
elastic graph searching is used so as to find the fiducial points that con-
tains subjects’ identity. However, the distortion in the geometric struc-
ture caused by the exhaustive elastic search would introduce ambiguity
for close poses. Furthermore, for pose estimation, we do not require exact
match of the fiducial points since the nodes from Gabor jets are actu-
ally able to describe the neighborhood property. That is the reason we
use the ”semi-rigid” bunch graph, in which the nodes can only be in-
dividually adjusted locally in legitimate geometrical configurations. We
use multiple bunch graphs per pose to incorporate all available geomet-
ric structures. The reason is that the geometric structure captured by a
single model graph is not subject-independent. Simply averaging is not
sufficient to describe all subjects. Since the first stage estimation restricts
the possible candidate in a small subset, the computational cost is still
reasonable.

The data span pan angles from −90o to 90o and tilt angle from −60o

(head tilt down) to 45o (head tilt up). 86 poses are included, as shown
in Fig. 3.



Fig. 2. Flowchart of the two-stage pose estimation framework. The top diagram is for
the first-stage estimation and the bottom one is for the second-stage refinement. The
output of the first stage is the input of the second stage.

3 Stage 1: Multi-resolution Subspace Analysis

Gabor wavelet transform is a convolution of the image with a family
of Gabor kernels. All Gabor kernels are generated by a mother wavelet
by dilations and rotations. Gabor wavelets provide a good joint spa-
tial frequency representation. DC-free version of the Gabor wavelets can
suppress the undesired variations, such as illumination change. Also, op-
timal wavelets can ideally extract the position and orientation of both
global and local features [22]. Only magnitude responses are used in our
algorithm since the phase response is too sensitive.

3.1 Subspace projection

The wavelet features suffer from high dimensionality and no discriminant
information are extracted. Subspace projection is used to reduce the di-
mensionality as well as extracting the most representative information.
In this paper, we compare four popular subspaces for better discovering



Fig. 3. Examples of the image set. The top two poses are not discussed because of
lacking of enough samples.

the underlying data structure, which are PCA, MDA and their corre-
sponding nonlinear pair. For the clarity of presentation, in the following
sections, the data set is denoted as {xi}i=1,···,N with C classes. Samples

from c-th class are denoted as xc,i, i = 1, · · · , Nc, where N =
∑C

c=1
Nc

and {xi}i=1,···,N = ∪C
c=1{xc,j}j=1,···,Nc .

Linear subspace projection PCA aims to find the subspace that
describes most variance while suppresses known noise as much as pos-
sible. PCA subspace is spanned by the principal eigenvectors of the co-
variance matrix, which is:

Σ =
1

N

N∑
i=1

(xi − µ)(xi − µ)T; (1)

where µ is the sample mean: µ = 1
N

∑N

i=1
xi. The principal components

are computed by solving the following eigen-decomposition problem:

ΣV = ΛV; (2)

where Λ is the diagonal matrix whose non-zero entries are the eigenval-
ues λi of Σ. V is the matrix from eigenvectors. λi indicates the infor-
mation preserved on the corresponding eigenvector direction. By picking
the eigenvectors with the largest eigenvalues the information lost is min-
imized in the mean-square sense.
While PCA looks for a projection subspace with minimal information
lost, discriminant analysis seeks a projection subspace efficient for classi-
fication. The basic idea is to find a projection, in which the within class
data are compactly represented while the between class data are well-
separated. We use a multiple class discriminant analysis as introduced



in [18]. The within-class scatter matrix SW is used to evaluated the data
compactness, defined as follows:

SW =

C∑
c=1

Nc∑
i=1

(xc,i − µc)(xc,i − µc)
T; (3)

with µc = 1
Nc

∑Nc

i=1
xc,i as the class mean. The separability between data

from different classes is evaluated by the between-class scatter matrix as
follows

SB =

C∑
c=1

Nc(µc − µ)(µc − µ)T; (4)

where µ = 1
N

∑N

i=1
xi is the overall sample mean. The subspace is found

by Fisher’s criterion, which maximize the Raleigh coefficient:

J (V) =
VTSBV

VTSW V
. (5)

This turns out to be an eigen-decomposition problem. The solution can
be found by solving the generalized eigen-decomposition problem SBvi =
λiSW vi.
PCA and MDA provide powerful linear techniques for data reduction.
However, most interesting data in real world assume certain non-linearities
that linear projection can not model. This inspires the use of kernel ma-
chine, which explores the non-linearity of the data space. The extended
nonlinear alternative, KPCA [19, 23] and KDA [20], are used.

Kernel machine: KPCA and KDA In [11] the use of KPCA for
modeling the multi-view faces in the original image space was presented.
Assuming data non-linearly distributed, we can map it onto a new higher
dimensional feature space {Φ(x) ∈ F} where the data possess a linear
property. The mapping is Φ : x 7→ Φ(x). KPCA is realized by a linear
PCA in the transformed space F . The covariance matrix now becomes:

Σ =
1

N

N∑
i=1

(Φ(xi)−Φ(µ))(Φ(xi)−Φ(µ))T. (6)

Sample mean Φ(µ) = 1
N

∑N

i=1
Φ(xi). Only dot product Φ(xi)•Φ(xj) is

involved, hence no explicit function is needed for the mapping Φ. Define
the kernel as

K(xi;xj) ≡ Φ(xi) •Φ(xj)

and the Gram matrix K as a N×N matrix with its entry:K(xi;xj), (i, j =
1, · · · , N). The Hilbert space assumption constrains v’s solution space
within the span of {Φ(x1), · · · ,Φ(xN )}, which means v =

∑
i
αiΦ(xi)

(α = [α1, · · · , αN ]T). The linear PCA problem in space F gives:

K′α = Nλα, (7)

where K′ is the slightly different version from K by removing the fea-
ture’s mean:

K′ = (I− eeT)K(I− eeT); (8)



e = 1√
N

[1, 1, · · · , 1]T.
The eigen-decomposition of the Gram matrix provides an embedding
that captures the low-dimensional structure on the manifold. Hence, a
better generalization ability can be achieved. In our implementation, we
use the traditional Gaussian kernel.
The same as KPCA, KDA processes data in the transformed space F .
Hilbert space is assumed so that k-th projection direction is: wk =∑N

i=1
α

(k)
i Φ(xi). Introduce the kernel K(xi;xj) = Φ(xi) • Φ(xj) and

define an additional kernel matrix Kc as a N ×Nc matrix whose entry is
K(xi;xc,j) (i = 1, · · · , N , j = 1, · · · , Nc). Now the scatter matrices can
be represented by:

WTSBW = WT

C∑
c=1

Nc(µc − µ)(µc − µ)TW

= VT(

C∑
c=1

Kc1cK
T
c

Nc
− K1K

N
)V; (9)

WTSW W =

C∑
c=1

Nc∑
i=1

(xc,i − µc)(xc,i − µc)
T

= VT(

C∑
c=1

KcK
T
c −

C∑
c=1

Kc1cK
T
c

Nc
)V. (10)

where 1 is an N×N matrix with all 1 entries and 1c is an Nc×Nc matrix
with all 1 entries. The new projection matrix is V = [α1, · · · , αm] with

αk = [α
(k)
1 , · · · , α(k)

N ]T. The Raleigh’s coefficient now becomes:

J (V) =
VT(

∑C

c=1
1

Nc
Kc1cK

T
c − 1

N
K1K)V

VT(
∑C

c=1
KcKT

c −
∑C

c=1
1

Nc
Kc1cKT

c )V
. (11)

Similar as its linear alternative, KDA projection is pursued by maximiz-
ing the Raleigh’s coefficient.
In Fig. 4 and Fig. 5, 2D toy examples are used to illustrate the four sub-
space analysis methods. In Fig. 4, the original 2D data are projected onto
the 1D PCA and LDA subspace as shown. LDA can well-separate the
data while PCA cannot. In Fig. 5, we illustrate the separation abilities
for nonlinear data set. All four subspace projections are compared on a
binary 2D toy data set. As can be seen, PCA and LDA are not able to
produce a more discriminating representations due to the non-linearity
of the data, whereas the KPCA and KDA transform the data into two
well-separated clusters.

3.2 Prototype matching

We use the nearest prototype matching for the first stage classification.
Each pose is represented by a set of subspaces, each of them computed
from filter responses in one resolution. In each subspace the prototype
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Fig. 4. Illustrative example of PCA and LDA subspace representation. The data from
two classes are shown in red and blue individually. Left: original data; middle: projected
data from PCA subspace; right: the projected data from LDA subspace.

from class mean is found as a template. Euclidean distances is used to
measure the similarity in subspaces. The pose estimation is given by the
prevailing class label from all resolutions as illustrated in Fig. 2. This
gives a single pose as an estimate. We relax the single estimated pose
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Fig. 5. Illustrative examples of the subspace representation for nonlinear data. Red
color and blue color indicate samples from different classes. First row: the original
data. Row 2-3: transformed data (top: 2D space; bottom: 1D space). From column 1
to column 4: PCA, LDA, KPCA, KDA. Kernel: same Gaussian kernel.

label to a subset of 3 × 3 poses around it for additional robustness. A
second-stage is applied thereafter to solve the sub-problem, where only
poses in the subset are tackled.

4 Stage 2: Geometric Structure Analysis

The second stage serves to refine the coarse pose estimation. In this
section, we use a revised version of the face bunch graph introduced
in [17] for this purpose. Face graph is a labeled graph which connects the
local image features together with the image’s geometric configuration.
It exploits the local salient features on a human face, e.g. pupils, nose
tip, corners of mouth, and etc. together with their locations.

4.1 Bunch graph construction

Each face image constructs a model graph. The model graph is a labeled
graph with its nodes corresponding to the Gabor jets at the predefined



Fig. 6. Examples of the face model graph. Left: pan: 0o tilt: 0o; middle: pan: −15o

tilt: 0o; right: pan: +15o tilt: 0o.

salient facial features, and its edges labeled by the distance vector be-
tween nodes. Gabor jet is defined as the concatenation of the Gabor
wavelet responses at an image point. Some examples of the model graphs
are show in Fig. 6. Occlusion of the current view determines how many
nodes are used. More nodes assert more geometric constraint useful for
pose discriminating, however, more identity information could be pre-
served.
Each view is modeled by one set of bunch graphs from the model graphs
of the same pose. The nodes of the bunch graph are the bundles of
the corresponding nodes in model graphs. The geometric structure is
subject-dependent in a certain degree. Subjects from different race, age
group, or different gender possess different geometric configuration. Al-
though a simple average of all the geometric configurations followed by
an exhaustive search and match can still be used to find the identity-
related fiducial points, this step will also add ambiguity to the global
structure between close poses. In the purpose of retrieving the pose in-
formation while suppressing the subject identity, we keep every available
geometric configuration and use a semi-rigid searching for matching,
which means only local adjustment is allowed for refine the estimated
face graph. Therefore, for each pose, we actually have the same number
of bunch graphs as the model graphs. Each bunch graph inherits the
edge information from an individual model graph. All the bunch graphs
differ only in the edge labels. This is illustrated in Fig. 7. This strategy
enables us to avoid large distortions in geometric structure that causes
ambiguities between neighboring poses. This offline model construction
step gives each pose a set of bunch graphs as the templates.

4.2 Graph matching

Denote the subset of poses confined by the first stage estimation as Ps.
Given a test image, every pose candidate in Ps gives an estimated face
graph by searching the sets of nodes that maximize the graph similarity.
Graph similarity is determined by both the similarity of the nodes and
the distance in edge labels. We use the normalized cross correlation as the
nodes similarity metric [17]. Let J(i) = (f1(i), · · · , fF (i)) be the Gabor
jet for i-th nodes. Nodes similarity D is given by:

D(J(i);J(k)) =

∑F

m=1
fm(i)fm(k)√∑F

m=1
f2

m(i)
∑F

m=1
f2

m(k)

. (12)



Fig. 7. Construction of the bunch graphs as the template for a single pose. Frontal
view is used. The graphs shown here are just for illustration. In actual computation,
more nodes are used, hence the graph structure is different from that shown here.

The graph similarity S between the estimated face graph G = (Jm, δe)
and some bunch graph B = ({JBi

m }i, δ
B
e ) is defined as:

S(G,B) =
1

M

M∑
m=1

max
i

(D(Jm;JBi
m ))− λ

E

E∑
e=1

(δe − δB
e )2

(δB
e )2

; (13)

where λ is the relaxation factor.
Since we have multiple bunch graphs for a single pose, each of them can
generate a possible face graph for the testing image. The best matched
one needs to be found as the representative face graph for this pose. This
best face graph estimate is given by the following steps:
1. Scan the testing image. Each rigid topographic constraint (λ = ∞)

determined by one bunch graph gives a set of matching nodes, and
hence a graph Gt. Out of which the best matched one is:

t? = arg max
t
S(Gt,Bt),

with λ = ∞.
2. The nodes of the best matched estimated graph Gt? are individually

adjusted locally to refine the match.
3. Refined nodes determines the graph.

The best geometric configuration t? is selected and the graph similarity
between the estimated face graph and the t?-th bunch graph is evaluated
by equation 13. The pose with the highest similarity score gives the final
pose estimation.



5 Experimental Evaluations

The data set used for evaluating this approach includes 28 subjects.
Magnetic sensor is used to provide the ground-truth. Some poses are
excluded due to lack of enough samples (see Fig. 3). We include 86 poses.
The pan angle spans from −90o to +90o; with 15o intervals from −60o to
60o, and then the poses with ±90o pan angles are also considered. The
tilt angle has a consistent interval of 15o from −45o to 60o. 3894 images
of size 67×55 and their mirror images are used, so altogether 7788 images
included. Each pose has 80∼100 images, randomly split into two parts,
one for training and one for testing. Some subjects may have multiple
samples for one pose, assuming sufficient different facial expressions. We
use Viola and Jone’s face detector [24] to get the face area. 9 separate
detectors are trained for different views. For each image, we manually
select one detector according to the ground-truth of the head pose.

5.1 Stage 1: ”coarse” pose estimation

Output of the first stage is a p × p subset of poses. The accuracy is
evaluated accordingly: if the true pose does not belong to this subset,
it is counted as a false estimate. In our implement p = 3 is used if not
specially stated. Bigger p gives better accuracy, however, more compu-
tational cost will be needed for the second stage refinement. In table 1,
the first-stage estimation for different subspaces are evaluated under dif-
ferent p. To better present the error distribution, in Fig. 8 we use a color

p=1 p=3 p=5

PCA 36.4 86.6 96.9

MDA 40.1 88.0 97.3

KPCA 42.0 90.2 99.2

KDA 50.3 94.0 97.9

Table 1. First-stage multi-resolution subspace analysis results evaluated under dif-
ferent p.

coded error distribution diagram to show the accuracy for each pose for
KDA subspace (evaluated under p = 3). Darker color shows more er-
ror. All four subspace didn’t give a satisfactory results comparable with
those reported when p = 1, which is actually the accuracy of using sub-
space analysis alone. This is not a surprise, since the subspace analysis
is very sensitive to the data noise, such as background and data align-
ment. In our data set, the face position is not well-aligned. Also in some
images parts of the hair and shoulder appears while not in the other. In
such case, the subspace analysis alone is not capable to obtain as good
performance. The use of the two-stage framework solves this problem.
More experiments validate the advantage of the two-stage framework.
We purposely translate the cropping window for the testing face images



Fig. 8. Color coded error distribution diagram for KDA subspace (p = 3).

by ±2,±4,±6,±8,±16 pixels in both directions, which aggravates the
misalignment. Use the same KDA subspace obtained in previous step
to test the performance. The accuracy is evaluated for both p = 1 and
p = 3, as show in Fig. 9. Experimental results indicate that when using
p = 3 to evaluate the accuracy, the accuracy is actually quite stable with
the aggravating misalignment. However, when p = 1, the accuracy keeps
stable for small misalignment (<4 pixels), and drops fast with increasing
misalignment. Since the second-stage is not affected by the misalignment,
if we can get a stable output for the first-stage with increasing misalign-
ment, the overall accuracy would be stable. This shows the advantage of
the 2-stage framework.

5.2 Stage 2: refinement

We only use the best results, which is from KDA subspace analysis, as
the first-stage output. The pose estimation accuracy after the refinement
is summarized in Table 2. The accuracy was evaluated by the ratio of
samples that were correctly classified. Pose with tilt angle 60o get poor
performance. It is because of the severe occlusion. Discarding these poses,
the overall accuracy can be improved to 81.3%. For comparison, a second
stage refinement by multi-resolution MDA analysis is also performed,
using the poses confined by the first stage. The results are shown in
Table 3. The comparison shows that by introducing the second-stage
structure landmark matching, the estimation accuracy has a markable
improvement.

6 Concluding Remarks

In this paper we discussed a two-stage approach for estimating head pose
from static images. We use statistical subspaces analysis in Gabor wavelet
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Fig. 9. The performance with the added misalignment (±16,±8,±6,±4,±2) in both
directions. Top row: misalignment in the horizontal direction. Bottom row: misalign-
ment in the vertical direction. Left column: accuracy change with misalignment. Right
column: relative accuracy change with misalignment. Blue curve with x: evaluated on
p = 3. Red curve with o: evaluated on p = 1.

domain to confine the possible range of the head pose. Semi-rigid bunch
graph was used to systematically analyze the finer structural details as-
sociated with facial features, so as to refine the first-stage estimate. The
combination of statistical analysis on features from entire images with
the geometrical topograph driven approach provides a robust way to es-
timate the head pose in a fine scale. It solves the internal problem of
the statistical analysis approach that requires a high-quality data set, as
well as introducing the methodology of decomposing a large classification
problem into smaller sub-problem, so that template matching is feasible.
Experimental results show that better performance can be obtained than
statistical analysis alone.
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