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Abstract— We describe a system that employs the use of an
omnidirectional camera in tandem with a pan-tilt-zoom (PTZ)
camera in order to characterize traffic flows, analyze vehicles,
and detect and capture anomalous behaviors. The framework is
such that we can generate long-term statistics of traffic patterns
while still monitoring unusual activity, even apart from the
traffic zone. We use the PTZ in conjunction with the omni
camera in order to perform classification analysis at coarse
and fine levels. The omni performs the coarse classification
and using information from that camera, the PTZ is able to
perform refined classifications while actively moving throughout
the scene.

I. INTRODUCTION

Improving efficiency and safety of the road network is one

of the main goals of intelligent transportation systems. Anal-

ysis of traffic parameters such as flow, speed, and density

are important for transportation planning in order to enhance

the efficiency of the roadways. On the other hand, analysis

of behavior of individual vehicles has potential to enhance

the safety by detecting accidents and unsafe situations in

advance. Vehicle detection, tracking, and classification form

the basis of such system for traffic analysis. In recent times,

video-based analysis has gained popularity for these tasks.

Considerable research has been performed and many good

systems have been designed [1][2][3]. However, most current

systems are based on a single camera which results in

a tradeoff between the field-of-view and resolution. Pan-

Tilt-Zoom (PTZ) cameras, which have been common in

surveillance applications, can obtain high resolution videos

of user-specified locations. However, they cannot obtain the

full picture of the scene at the same time. Hence, a system

combining a wide field-of-view (FOV) camera for complete

scene coverage and a PTZ camera for selectively zooming

into interesting parts of the scene forms an ideal combination.

In this paper, we propose a traffic flow analysis and

classification system which keeps track of vehicles in the

scene using a wide FOV camera. Using the PTZ camera, high

resolution snapshots are captured at multiple locations on the

vehicle track by repeatedly controlling the camera. Capturing

images at multiple viewpoints has the potential to give

information which can be useful for detailed classification,

identification, and higher level analysis. In particular we

use tracking information acquired from the omnidirectional

camera in order to detect vehicles in the PTZ images. We

then perform analysis of that detection region in order to

improve the vehicle classification. Vehicle tracking in the

wide FOV camera is also used to generate traffic statistics

over a long period of time. Additionally, parking lot activity

is analyzed with the same camera because of its large field

of view. Section 2 gives the overview of the system and its

major components. In section 3, each of the components is

discussed in detail. Experimental results are in Section 4.

II. SYSTEM OVERVIEW

This paper describes a fully functional traffic monitoring

system. Similar uni-camera systems have been discussed

previously, such as in [4]. Yet our system is unique in

the fact that we have two very different cameras working

in unison to, not only continuously analyze traffic patterns

and statistics, but to also actively detect events and perform

refined classification.

Fig. 1. The system deployed. Top-left quadrant: A context-aware map
actively showing the PTZ camera direction. Top-right quadrant: The PTZ
image with buttons for camera control. Bottom half: Omni traffic analysis.
Statistics are in the top-left corner and stored for further analysis. Detected
objects are marked with green boxes.

III. SYSTEM ARCHITECTURE

A. Equipment

Our monitoring system uses a high-resolution

(1600×1200) omnidirectional video sensor that has

the capability of seeing objects in a 360 degree field-of-

view. Because this omni camera is capable of capturing

images over a very large field-of-view, we use it to monitor
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traffic statistics over a stretch of road that is greater than

one-hundred meters in length. Furthermore, the camera has

an excellent view of a large parking lot adjacent to the

road, as can be seen in Fig. 1. In addition to analyzing road

traffic, we are able to concurrently analyze activity in the

parking lot. While a conventional rectilinear camera might

be able to perform one of these tasks alone, it is nearly

impossible to do both with a single camera.

The second camera is a PTZ camera mounted nearby the

omni. It has high zoom capabilities that prove to be desirable

for performing detailed analysis of objects captured with the

omnidirectional camera.

Calibration: To calibrate the cameras, we use the fact that

they are positioned in spatial proximity and relatively far

from the scene. We find corresponding points for a number

of PTZ positions in the omni image as shown in Fig. 2.

Using these points we are able to compute a first-order

functional relationship that approximately maps coordinates

in the omnidirectional image to pan and tilt values in the PTZ

camera without using camera geometry. For a fixed zoom

value, the pan and tilt values (θ and φ ) for the PTZ are

given in terms of omni coordinates (x,y) as follows:

Pan : θ = α − arctan(
x− cx

y− cy

) (1)

Tilt : φ = β − γ
√

(x− cx)2 +(y− cy)2 (2)

where cx and cy are the coordinates of the center of the
omni image and α , β , and γ are experimentally evaluated.

Fig. 2. Calibration correspondence points. Yellow rays represent changes
in pan position and red points represent tilt positions for that pan value.

B. Video-based Processing

1) Segmentation & Tracking: Tracking is performed using

established image segmentation techniques with dependable

results. We first segment the image retrieved from the omni-

camera by generating a mixture of Gaussians background

model as discussed in [5], [6], and [7]. Once the image

is segmented, blobs identified as foreground are tracked by

applying a Kalman filter at each frame as described in [4].

2) Classification: Objects in the omni images are clas-

sified into one of five predefined groups ‘person,’ ‘crowd,’

‘car,’ ‘bus,’ or ‘no label.’ Because the relationship between

object position and size is not uniform in the omni image,

we plot track sizes as a function of image position (x-

coordinates) and observe that the behavior is a nearly linear

function. We perform a linear regression on several tracks to

compute their functional estimate. There is a clear margin

of separation between smaller objects (cars, vans, trucks,

SUV’s) and larger objects (buses and semis). We take the

mean of all of the functional estimates of these tracks to be

the class-separating line. Since pedestrians are much smaller

than any vehicle, we compute the estimated boundary be-

tween cars and pedestrians as a line with a slope significantly

smaller than the smallest car. Fig. 3 shows the plot of the

various vehicle track sizes as a function of position. The class

boundaries are shown in green. The overall classification is

done with the following heuristic:

• Obtain the approximate area of the object, A, as the area

of the bounding box of the tracked detection.

• If track length is less than N, then the class is ‘no label.’

• Else, for T1 < T2, classify the track as ‘pedestrian’ if

A< T1, ‘car’ if T1 ≤A < T2, and ‘bus’ if A≥ T2, where T1

and T2 are boundary lines obtained in linear regression.

• Obtain the direction of travel of the track based upon

the direction it has travelled in the furthest.

• If the label was ‘car’ or ‘bus’ and its direction is

perpendicular to the road, then relabel it as ‘crowd.’

Thus, we are able to find class separations between pedestri-

ans, smaller objects (cars, vans, trucks, SUV’s), larger objects

(buses and semis), and crowds.
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Fig. 3. Class boundaries for video based classification. The blue lines are
the areas of the tracks as a function of position. Red lines represent their
linear estimate. Green lines are the final class boundaries, T1 and T2.

3) Statistics Generation: Based on the tracking in the om-

nidirectional video, we collect information about individual

detections as well as general traffic statistics. Due to the large

field-of-view of the omni camera, vehicles can be tracked

for a long stretch of road to acquire more accurate vehicle

statistics. In each direction of travel, we compute vehicle

counts and velocity estimates. We store this information

along with track histories and sizes for further analysis.

4) Event Detection: The system has the capability of

detecting many types of events. Possible events of interest

can be to capture vehicles speeding, making U-turns, or other

illegal maneuvers. For demonstration of system capabilities,

we detect two kinds of events (in addition to the PTZ events

we describe in the next section). The first event is to monitor

a user-specified “virtual fence” region. Whenever an object

enters this region an alarm is triggered to report the breach to
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whoever might be monitoring it. The second event detection

is when a vehicle stops anywhere on the road for more than a

few seconds. We consider this event a stalled car or possibly

an accident and so again want to trigger an alarm.

5) Parking Lot Activity Analysis: To demonstrate the

advantages of using an omni camera, we also analyze the

parking lot area. We collect tracking data and use it to

determine the lanes that are used by the vehicles. We also

examine behaviors in the lot. Furthermore, we potentially

could perform parking occupancy measures throughout the

day to learn usage patterns. This could be useful in order to

possibly alleviate parking congestion during peak times or

for planning of future parking lots.

C. Event-based Active PTZ Control

Using the relative calibration of the omni and PTZ cam-

eras, we are able to actively servo the PTZ camera to

locations of interest as detected with the omni tracking. One

interesting usage of event-based servo-ing is to capture the

events we previously labelled as stalled cars or accidents

with a finer degree of resolution. Our system does so by

informing the PTZ of the occurrence of the critical event so

we can capture and store the activity.

Additionally we define an event whenever a new

westward-bound vehicle is detected and a second corre-

sponding event when the vehicle is going out of the range

of the omni camera. When either of these events occurs,

the PTZ automatically servos and captures higher resolution

images to refine the classification of the vehicle.

D. Camera Based Analysis

Due to the fact that the PTZ is capable of moving to a

location and displaying scenes at a finer granularity than the

omni, we use to it provide classification refinement on top

of what the omni can provide.

Vehicles are captured at a lower resolution in the omni

image. Therefore, it is difficult to identify features that

distinguish vehicles. However, in the PTZ images, they

are much more clearly evident. The following subsections

describe the algorithms we use to classify vehicles into three

categories: small (sedans), medium (trucks, vans, SUVs),

and large (buses, semis). Further class separation is certainly

possible if one identifies features that distinguish between,

for example, trucks and vans.

1) Detection: To detect vehicles, we initially capture

snapshots of the road when no cars are on it (this is

identified from the tracking done in the omni). We use the

median of these images as a model for our background

scene. This is subtracted from the image being processed

and pixel values greater than a threshold, T, are deemed

foreground objects. Alternatively, we could take multiple

snapshots over a window of time when capturing a vehicle

and use those additional images as the background. We next

perform morphology to smooth away noise and close blobs.

Afterwards we select the largest blob as being the vehicle

detection according to background subtraction.

However, segmentation alone does not rely on the addi-

tional knowledge the omni can provide, and is therefore more

prone to error. To add semantic knowledge to the detection,

we first make the assumption that, for any given perspective,

the region in the omni camera is approximately planar. Since

the PTZ is generally observing a small area and the cameras

are high above the scene, it is a reasonable assumption. We

therefore use the four-point algorithm as defined in [8] to

compute a homography between the bounding box in the

omni image and the one in the PTZ.

Homography without segmentation would not generate

bounding boxes accurate enough to use on their own because

the PTZ camera mechanics introduce a nonuniform time

delay between the time the omni image is captured and when

the PTZ actually moves and captures its image. However, by

using homography with segmentation, we should get a final,

reliable region of interest.

Fig. 4. PTZ Object Detection (a) Background (b) Foreground (c) Morphol-
ogy (d) Blob (e) Blob on Original (f) Segmentation Box (g) Homography
Box (h) Final Bounding Box

Fig. 5. Jitter provides poor results. Homography improves the detection.

Fig. 6. Segmentation falsely identifies the vehicle closer to the camera as
the detection. However, homography rectifies the false labelling again.

Fig. 4 shows the procedure graphically. In this case, the

segmentation was sufficient for identifying the bounding box.

Fig. 5 and Fig. 6 show two potential problems of using just

segmentation. In Fig. 5, slight camera jitter introduces much

more foreground than is expected. Therefore, the bounding

box is inaccurately labelled. However, images (g) and (h)

show the improved, albeit larger, bounding box by using

the omni information. More interestingly, Fig. 6 depicts a
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scenario with two vehicles in the scene. With segmentation

alone, we choose the incorrect vehicle as the vehicle being

tracked. Yet the homography bounding box corrects the

mistake and isolates the correct vehicle.

2) Feature Selection: Once we obtain the cropped image

of the vehicle, we compute a feature vector in order to

classify the image using Support Vector Machines (SVMs).

Texture descriptors such as the Gradient Localization-

Orientation Histogram (GLOH) (also known as Histogram

of Oriented Gradient (HOG)) have been proposed in [9]

to classify objects. This approach divides the image into

rectangular cells and computes the histogram of the gradient

orientations in each cell. These histograms are used as feature

vectors for the SVM to distinguish between objects. The

approach has also been extended to finding other objects.

Koch and Malone [10] use the GLOH at multiple scales

to distinguish between vehicles and other objects, such as

animals and people, in thermal infrared images. The results

from individual frames are fused over the entire vehicle track

using the sequential probability ratio test.

The procedure for computing a GLOH is as follows:

• Compute the gradients in x and y dimensions.

• Subdivide the image into M×N discrete blocks.

• For each block element, quantize the gradient orienta-

tions into K bins. For each bin, increment the corre-

sponding histogram bin.

• Collect the histograms into an M×N×K array and

smooth spatial and orientation directions to avoid alias-

ing.

• Normalize the histogram array to unit vectors.

• Clip all values greater than c=0.2 to reduce the effect of

large gradients due to spurious illumination and other

changes. Renormalize.

• Stack the resulting array into a B=M×N×K dimen-

sional feature vector.

3) Classification: After a feature vector is generated by

GLOH for each image, it is passed on to the SVM algorithm

for classification. SVM projects this data into a higher

(potentially infinite with kernel functions) dimensional space

where there exists a separating hyperplane between classes.

Then the algorithm attempts to maximize the margin between

the two classes by constructing two parallel hyperplanes

on either side of the separating hyperplane. The hyperplane

that has the largest margin is deemed the maximum-margin

hyperplane and is a function of only those data points that lie

on the margin (i.e., the support vectors). A guide to SVMs

is included in the library package available from [11].

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

To examine the functionality of the system, we ran a three-

hour experiment from about 2:00 pm to 5:00 pm to gather

data for the statistics experiments.

For SVM classification, we used 629 images of small,

medium, and large vehicles as the training set. We then tested

the classification using 164 separate test images.

Furthermore, we tested each of the functionalities we have

thus far described.

B. Statistics

For traffic flow statistics, we generated vehicle counts

of the eastbound and westbound lanes. Every minute the

number of vehicles travelling in each direction was stored

in a local database. Fig. 7 displays the flow patterns on

the eastbound lane. We see that the traffic density remained

fairly regular except when more vehicles were detected in the

second half of the first hour. This experiment was performed

on a Sunday, and so we see that weekday rush hour behavior

is not observed in the evening as would be expected. Instead,

there is actually more activity earlier in the afternoon.

In Fig. 8 we see that while traffic had a fairly regular flow

pattern, more vehicles drove by in the first hour than in the

next two hours. Again, the explanation could be the same as

that of the eastbound statistics.
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Fig. 7. Vehicle counts on the eastbound lane in 5-min intervals. Blue is
the 1st hour, red the 2nd, and green the 3rd.
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Fig. 8. Vehicle counts on the westbound lane in 5-min intervals.
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Fig. 9. Velocity statistics on both lanes in 5-min intervals. Velocities are
normalized to the average velocity over the 3-hours.

We also maintain statistics on vehicle velocities. Fig.

9 shows the plots for average velocities over five-minute

intervals. Interestingly, when we had the most vehicles, the

average velocity was the lowest.

C. Parking Lot Activity

Fig. 10 illustrates the paths vehicles followed over a three-

hour period in the parking lot adjacent to the road. From this
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we clearly see the lanes. We also notice the discontinuities

where there are occlusions by the trees. These path statistics

could be used to perform occlusion reasoning for tracking

vehicles in the lot.

Also, in Fig. 11, we show an image of parking lot activity

analysis for one of the three hours. At each node, we display

the number of vehicles that were going further into the

parking lot through that node as values in blue and vehicles

exiting as values in red. We note that few vehicles drove all

the way into the back of the lot. This is probably because this

portion of the lot was already full at this time. The majority

of the vehicles entered into the middle area and drove out

(or possibly circled around) from the section closest to the

camera.

Fig. 10. Vehicle paths over a 3-hour time period overplotted onto an image
of the scene

Fig. 11. Estimates of parking lot activity from 10-11am. Blue numbers
indicate tracks that were going further into the parking lot through the node,
while red numbers indicate tracks that were exiting through the node.

D. Event Detections

1) Stopped/Stalled Car: Fig. 12 depicts some thumbnails

where a vehicle has been captured as being considered either

“stopped” or “stalled.” There are two snapshots for each

track, one when it first enters the scene and one when it is

Fig. 12. Vehicle captured as
stopped/stalled on the roadside

Fig. 13. Scenes where vehicle
capture was missed

Fig. 14. Correctly captured vehicles

leaving it. Thus, we show that we can in fact correctly locate

and identify a vehicle in distress and respond accordingly.

2) Active PTZ: In Fig. 14 we show a sequence of typical

cars captured correctly using the system. In Fig. 13 we

see that at times it will miss a car in one of its snapshot

sequences. A possible explanation for this behavior is that

if the camera was busy capturing the end of a nearby track,

it will not have sufficient amount of time to move back in

time to capture the current track. This can be seen in the first

example (track 85) where we notice that in the snapshot on

the right that there was a car directly in front of the currently

tracked vehicle.

3) Size-Based Classification: Table I shows the results

for the size-based classification with the omni camera. The

“other” category refers to vehicles that were labelled as

‘pedestrian’, ‘crowd,’ or not given a label. Since this test set

only contained vehicles, all three categories were combined

to signify a mislabelled vehicle. With these three categories,

the omni achieved a total classification rate of 80.49%.

TABLE I

CONFUSION MATRIX FOR HEURISTIC-BASED OMNI CLASSIFICATION

Classification Results

Predicted

Sm/Med Large Other Totals Accuracy

Sm/Med 124 0 31 155 80.00%
Actual Large 0 8 1 9 88.89%

Other 0 0 0 0 —

Totals 124 8 32 164 80.49%

E. PTZ Analysis

1) Classification Results: In table II the results for clas-

sification at one of the predefined snapshot locations are

shown. The results are shown for bounding boxes derived
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from background subtraction and from the combined homog-

raphy and segmentation approach. The test set contained 164

vehicles (97 small ones, 58 medium ones, and 9 large ones).

We note that even with the additional categorical break-

down between small and medium-sized vehicles, the PTZ

performs better than the omni does when we use well-defined

bounding boxes.

Since the comparison metric is unclear when we are

comparing between two different types of classification,

we repeated the classification method we used with the

PTZ images on the omni images. Table III shows the

confusion matrix for that method. In this test set, the PTZ

classification performed 8.53% better than the omni. While

this number is significant, we note that the results on the

omni are somewhat skewed since this set contained more

small vehicles than anything else. Clearly the omni has

difficulty distinguishing trucks, vans, etc. from smaller

vehicles like sedans. This is quantized in the second row

of the confusion matrix where we see the poor results of

classifying medium-sized vehicles. Most of the vehicles

are classified as small vehicles as the totals show. So even

though the test data favored the omni’s poor classification,

the PTZ still performed better. Additionally, were our

cameras fully calibrated, the PTZ classification would

perform even better with more accurate bounding boxes.

TABLE II

CONFUSION MATRICES FOR SVM-BASED CLASSIFICATION FROM PTZ

Using Segmentation

Predicted

Small Medium Large Totals Accuracy

Small 75 17 5 97 77.32%
Actual Medium 9 44 5 58 75.86%

Large 0 0 9 9 100.00%

Totals 84 61 19 164 78.05%

Segmentation with Homography

Predicted

Small Medium Large Totals Accuracy

Small 83 12 2 97 85.57%
Actual Medium 5 52 1 58 89.66%

Large 0 0 9 9 100.00%

Totals 88 64 12 164 87.80%

TABLE III

CONFUSION MATRIX FOR SVM-BASED CLASSIFICATION FROM OMNI

Classification Results

Predicted

Small Medium Large Totals Accuracy

Small 93 4 0 97 95.88%
Actual Medium 30 28 0 58 48.28%

Large 0 0 9 9 100.00%

Totals 123 32 9 164 79.27%

V. CONCLUDING REMARKS

We have shown that this system can reliably monitor traffic

flows and respond to various event triggers. In addition we

have demonstrated the strengths of an omni camera and the

even greater synergistic strength of combining both omni and

PTZ cameras. By taking advantage of the large viewing area

of the omnidirectional camera we showed that traffic patterns

could continuously be monitored while additional event

detections took place. Similarly, by a simple calibration,

the PTZ camera’s higher resolution showed that we could

capture a scene in greater detail for analysis refinements.

In the future, we plan on performing more detailed classi-

fication analysis on the PTZ images. For this we will require

highly accurate camera calibration which will have to take

into account the individual camera geometries and separa-

tions. We also hope to monitor parking lot activity much

more closely to potentially learn patterns of behavior in that

area. We will also gather statistics over much longer periods

of time to test the system performance over those time

periods. Additionally, rather than predefining set detection

events, we would like to learn anomalous events based upon

“normal” behavior learned from long-term track patterns.
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