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Abstract—This paper presents a multi-view approach to per-
formance evaluation of soccer players by the analysis of the
posture evolution. Some body-appearance features have been
extracted and the most significant ones have been used to model
the activity of the players involved in play. Continuous Hidden
Markov Models have been used to model the temporal evolution
of the body features in a multiple view decision making approach.
Tests were carried out on different sequences of player activities
extracted from matches played during the Italian “Serie A”
Championship.

I. INTRODUCTION

Some works have been presented in literature for tactical
and team statistical analysis. Starting from the ball and player
tracking information collected during the matches, these works
try to extract tactical information for trainers ([2] and [3]),
to evaluate player skills ([4],[5] and [6]) and to perform
game analysis ([7] and [8]). These systems are not completely
automatic but can greatly improve manual work during post
processing analysis.

In [2] and [3] a system for showing goal events in a tactical
mode to the coaches and sports professionals is described.
After an initial phase in which goal events are detected
by the analysis of web-casting text and broadcast video,
tactical representations, known as ”aggregate trajectory”, are
constructed based on multi-object trajectories using the anal-
ysis of temporal-spatial interactions among the players and
ball. The acquisition of player trajectories in far-view shots
is achieved by play-field detection using Gaussian mixture
color models and Support Vector Classification on player
candidates. A support vector regression particle filter keeps
tracking the player in the frames. The distance covered by
soccer players was measured in [4] with an automatic tracking
system that is corrected manually when complex situations,
such as when the player’s trajectory changes during periods
of occlusions, are not solved automatically. The segmentation
and tracking phases for each game require respectively 6 and
4 hours of processing and in order to calculate the image-
object transformation, before the games, 20 control points
were established and measured directly onto the field.

In [5] a semi automatic system was developed to acquire
player-possession for broadcast soccer video, its objective is

to minimize the manual work. To acquire player possession
the authors try to recognize the players touching the ball by
assuming that they are those closest to it. Support Vector
Machine methods are used to recognize the team of the player
touching the ball. The view information and the player roles
are used to produce the candidates for the player touching
the ball. The selection among the possible candidates is done
manually by the operator of the system.

Scout is a system presented in [7] for event game speed anal-
ysis and tracking. Background subtraction, connected com-
ponent labelling, morphological filtering are used to segment
and track moving objects. A vanishing point based method is
proposed to map between the screen and physical coordinate
systems. The system is designed to evaluate one player’s
performance at a time. In the case of complex player oc-
clusions, more sophisticated tracking modules will be needed
to avoid manual intervention. Analyzing the trajectories of
moving objects, which consist of 22 players and a ball, in
[6] much useful information is extracted in order to evaluate
the performance of several players in a quantitative way. The
proposed model is based on the trajectories of the players and
the ball and their relationship. Several performance measures
are introduced to analyze the performance concerning the
interactions between the players of the same team and of their
adversaries. The experiment was executed by collecting the
trajectories of players and ball from a simulated soccer game.
In [8] a model-based game analysis is carried out to map the
real game process into an abstract representation obtained from
features specifically designed for game analysis objectives.
The system requires a real time positioning system that can
continually track the position of the players’ feet and the ball
with an accuracy of a few centimeters. The authors propose
the usage of Cairos Technologies (RFID-based technology) to
collect the data and test their methodology to recognize passes,
shots, and dribbles on Robot Cup Simulated soccer matches.

In this paper we propose a multi-view approach for player
activity understanding. For the player performance analysis is
not only important to measure the distance covered during
the match by each player but also to evaluate how long the
players have had an active role in the play. The aim of this
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work is to detect when a player is involved in the action
either maintaining the ball control or interfering with opponent
players who are conducting the play. The analysis of the
body posture is fundamental in order to distinguish among
different player activities. The proposed approach consists
of two phases: an off-line learning phase and an on line
testing phase. In the learning phase some sequences of player’s
involved activities are extracted, some body posture measures
are evaluated and continuous Hidden Markov Models (HMM)
are generated. In the test phase consecutive sliding windows
of the player activities are provided to the HMM and the
multi view behavior probability is evaluated. Tests were carried
out on different sequences of player activities extracted from
matches played during the Italian “Serie A” Championship.

The rest of this paper is organized as follows. Section II
provides the system overview. In section III the body posture
measures and their temporal statistical models are described;
the multi view decision making procedure is detailed in section
IV. Experimental results are reported in section V.

II. SYSTEM OVERVIEW

The experimental set up consists of six cameras placed
on the two sides of the field, assuring that each area of
the pitch is covered by two opposite cameras. The imaging
solution uses DALSA Pantera SA 2M30 cameras, achieving
a resolution of 1920x1080pixels (Full HD) at 25fps. The
particular model uses a single CCD operating using a Bayer
filter. The acquired images are transferred to the six processing
nodes by fiber optic cables. Each node is equipped with
two Xeon processors (Nocona series) running at 3.4Ghz with
hyperthreading enabled. Each node features 2GB of RAM and
uses 8 SCSI disks with an individual size of 73GB (configured
in RAID0) to store the match, and another 120 GB SATA disk
for the operating system and the software. The graphics sub-
system is handled by a Geforce 7900GT card with 256MB.

Each node processes the image sequences separately, while
a supervisor node collects all the data and fuses the data
to evaluate the final behavior likelihood. In figure 1 we
plot the system overview. Each node extracts moving re-
gions by a background subtraction algorithm and detects the
player’s team by an unsupervised classification approach; than
a tracking algorithm extracts the player tracks solving group
situations by a splitting procedure that uses the knowledge of
classes of involved players. Details of these two steps can
be found in [10] and [9]. In this paper we consider only
the body posture feature extraction step and the successive
temporal modeling. The player tracks are analyzed during their
permanence in the image. For each frame of the sequence
different body posture features have been extracted. The player
dimensions can vary according to their posture and position
in the field, for this reason the features were normalized by
using the blob’s area or height. We represented the player’s
body by extending the feature vector introduced in [1] in order
to make it more suitable for our application context. Then
the most significant features were selected and provided to
one continuous HMM. During the training phase four players

were selected and several sequences, extracted from the phases
which the players were involved in, were used to train the
HMM. Then in the test phase different sequences of the same
players but also of different players were used to estimate
the behavior activity recognition. Images acquired by opposite
cameras are processed by the corresponding nodes and then
provided to a central supervisor that fuses the data and takes
the final decision on the behavior activity likelihood.
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Fig. 1. System Overview

III. PLAYER ACTIVITY REPRESENTATION

A. Body Posture Feature Extraction

Extracting the optimal set of features was subject of inten-
sive work in the literature of recent years, since the selection
of the most useful features, that have a high discriminative
power, is fundamental to the success of the separation between
classes. In particular, many works proposed a selection crite-
rion based on metrics that maximize the interclass distance
among posture classes. In our context we want to separate
involved and not involved behaviors that are characterized not
necessarily as variation of different postures, but as different
evolutions of the same body posture. For this reason it is
necessary not only to extract different body features that
allow the discrimination among some player activities such
as walking, standing, jumping, running, and so on, but also
to evaluate their evolution to appreciate the variation of these
activities and if the player is involved in the play. For example
the running activity assumes different characteristics if the
player is maintaining the ball control or he is just moving in
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the playing field. First of all we evaluated some body posture
appearance features generating for the j player at frame k a
feature vector

F k
j = [Ok

j ,W k
j , Lk

j , Rk
j , V xk

j , V yk
j ,Hk

j , Uk
j , θk

j , B1k
j , B2k

j ]

as follows. In this work we revised the F k
j in [1] by adding

more discriminating features for the considered application
context. In particular, the considered features are the following:

• Ok
j : the number of foreground pixels divided by the area

of the j − th bounding box at frame K;
• W k

j : Width of the bounding box divided by the height;
• Lk

j : Leftward span from the vertical major axis divided
by the height;

• Rk
j : Rightward span from the vertical major axis divided

by the height;
• V xk

j :Velocity of the j−th bounding box along the x-axis
of the image, divided by the height;

• V yk
j :Velocity of the j−th bounding box along the y-axis

of the image, divided by the height;
• Hk

j : Head ratio to height;
• Uk

j : Upper-body ratio to height;
• θk

j : Orientation of 2D Gaussian that represents the spatial
distribution (x, y) of the j − th foreground map with
centroid (X,Y )

• B1k
j width of the player’s upper body divided by the

height;
• B2k

j width of the player’s legs divided by the height;

Naturally, the vector F k
j , is not suited to be directly used

as input to the classification step for two reasons: the high
dimensional feature space makes it very difficult to build
an efficient classifier (this problem is reported as curse of
dimensionality) and, in addition, the measurements relative
to considered features are not uncorrelated. A straightforward
solution to these problems is to project the data onto low-
dimensional subspaces obtained by dimensionality reduction
transforms to extract the most significant and uncorrelated
features.

B. PCA Body Posture Feature Transform

Principal component analysis (PCA) is a classical linear
method that de-correlates the data and, at the same time,
supplies a robust criteria to select the most significant features
in the initial high dimensional set. PCA performs unsupervised
dimensionality reduction by transforming a data set consisting
of a large number of interrelated variables to a new set of
uncorrelated variables, while retaining as much as possible
the variations present in the original data set [11]. The key
idea in PCA is that, by ordering the eigenvectors of the data
covariance matrix according to the relative eigenvalues (largest
first), one can create an ordered orthogonal basis with the first
eigenvector having the direction of largest variance of the data.
In this way, we can find directions in which the data set has the
most significant amounts of energy and a new representation
of the initial data (with minimum mean-square error) can
be obtained by projecting them onto the most significant

eigenvectors. The minimum number of significant components
has to be experimentally evaluated by analyzing the relative
eigenvalues: the percentage of data variance retained in each
component is considered and, it is a common strategy, to select
the first n components which preserve at least the 90% of the
overall data variance. For example, in figure 2, the percentage
of variance of the initial data preserved in the eigenvectors
of the covariance matrix in the case of 100 measurements
of the 11 aforesaid features in F k

j is shown: the first three
components represent almost the 95% of data variance; if also
the fourth component is added the 99% of the variance of the
initial data is retained. This preliminary test shows that, in the
case of player posture measurements, it is possible to project
initial data onto the first three or four components and to obtain
a low-dimensional feature space that is a more suited input for
a classifier. As a consequence, in the proposed framework, a
new 4 dimensional feature vector

F̃ k
j = [Ck

1j
, Ck

2j
, Ck

3j
, Ck

4j
]

is built where the Ck
i are the first principal components ob-

tained projecting vector F on the orthogonal basis consisting
of the most significant eigenvectors of the covariance matrix
of selected set of data measurements. The feature vector F̃
is then the input to the classification phase detailed in the
following subsections.
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Fig. 2. Percentage of cumulative data variance preserved by the eigenvectors
of the covariance matrix

C. Player Performance Evaluation in a Single View

In the recent years, a lot of approaches to recognizing
human actions have been proposed. According to [12] these
approaches can be categorized into three major classes: non-
parametric, volumetric and parametric time series approaches.
Nonparametric approaches typically extract a set of features
from each frame of the video and then the features are then
matched to a stored template. They have sufficient discrimi-
nating ability for several simple action classes such as sitting
down, bending, crouching, and other aerobic postures but
they lose discriminative power for complex activities due to
overwriting of the motion history and hence are unreliable for
matching [13]. Volumetric approaches consider a video as a
3-D volume of pixel intensities and extend standard image
features such as scale-space extrema, spatial filter responses,
etc., to the 3-D case. Unfortunately these approaches strongly
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depend on the the spatial and temporal activity execution, the
body appearance, the noise, the possible occlusions and so
on[14]. Parametric time-series approaches specifically impose
a model on the temporal dynamics of the motion. The par-
ticular parameters for a class of actions are then estimated
from training data. Examples of parametric approaches include
Hidden Markov Models (HMMs), linear dynamical systems
(LDSs), etc. One of the most popular statespace model is the
Hidden Markov Model[15]. An HMM is a stochastic finite
automaton, where each state generates (emits) an observation.
Let Xt be the hidden state and Yt the observation. Yt might
be a discrete symbol Yt ∈ 1...L or a feature-vector Yt ∈ �L.
The parameters of the model are the initial state distribution

π(i) = P (X1 = i)

the transition model

A(i, j) = P (Xt = j|Xt−1 = i)

and the observation model

P (Yt|Xt)

with π(·) representing a multinomial distribution. The transi-
tion model is usually characterized by a conditional multino-
mial distribution: A(i, j) = P (Xt = j|Xt−1 = i), where A is
a stochastic matrix (each row sums to one).

If the observations are discrete symbols, we can represent
the observation model as a matrix:

B(i, k) = P (Yt = k|Xt = i).

If the observations are vectors in �L, it is common to represent
P (Yt|Xt) as a Gaussian:

P (Yt = y|Xt = i) = N(y, μi,Σi)

where N(y, μi,Σi) is the Gaussian density with mean μ and
covariance Σ evaluated at y:

N(y, μ,Σ) =
1

(2π)
L
2 |Σ| 12 exp(−1

2
(y − μ)′Σ−1(y − μ))

A more flexible representation is a mixture of M Gaussians:

P (Yt = y|Xt = i) =
M∑

m=1

P (Mt = m|Xt = i)N(y, μm,i, σm,i)

where Mt is a hidden variable that specifies which mixture
component to use, and P (Mt = m|Xt = i) = C(i;m) is the
conditional prior weight of each mixture component.

In this paper an HMM model consisting of 3 hidden states
and using MoG (Mixture of Gaussian) [17] as state output
is used for each camera view to automatically distinguish
between players involved or not involved in play. The input
of the HMM is the 4 dimensional feature vector F̃ obtained
after the application of the PCA feature selection approach
described in the previous section. A set of properly selected
sequences containing player involved in play is used to train
the HMM. The training phase is performed by using a gener-
alization of the EM algorithm for HMMs (often called Baum-
Welch). After that, the trained HMM determines the likelihood

that a player is involved or not in play: to do that, a sliding
window (sized as the training sequences) is used to select a
piece of the test sequence and then the selected subsequences
are sequentially given as input to the HMM that computes the
likelihood of observing a sequence relative to a player involved
in play.

IV. MULTI-VIEW PLAYER INVOLVEMENT EVALUATION

The player activity detection can be greatly improved if
multiple views are considered. In the soccer context, especially
when the players are involved in play, they move very close
occluding each other in the camera’s field of view. In these
cases the opposite views can perceive different situations
and their collaborative process increases the final likelihood
of the activity recognition. Decision fusion approaches aim
at combining the beliefs of the set of models used into a
single, consensus belief. In this paper we tested two popular
decision fusion approaches, i.e. the linear opinion pool and
the logarithmic opinion pool. The linear opinion pool is a
commonly used decision fusion technique that is convenient
because of its simplicity [16]. The fusion output is evaluated
as a weighted sum of the probabilities from each model.

Plinear(A) =
k∑

i=1

αiPi(A) (1)

where Plinear(A) is the combined probability employing a
set of models used for an event A; αi is the weight given to the
i-th model; Pi(A) is the probability of the i-th model for the
event A; and k is the number of models. The parameters αi

are generally chosen such that 0 ≤ αi ≤ 1, and
∑

i αi = 1.
The linear opinion pool is appealing in that the output is a
probability distribution, and the weight αi provides a rough
measure for the contribution of the i-th model. However,
the probability distribution of the combined output, namely,
Plinear(A), may be multimodal. An alternative to the linear
opinion pool we tested also the log opinion pool. If the weights
are constrained such that 0 ≤ αi ≤ 1, and

∑
i αi = 1, then

the log opinion pool also yields a probability distribution.
However, as opposed to the linear opinion pool, the output
distribution of the log opinion pool is typically unimodal. The
log opinion pool consists of a weighted product of the model
outputs

Plinear(A) =
k∏

i=1

Pi(A)αi (2)

Note that with this formulation, if any model assigns a
probability of zero, then the combined probability is also
zero. Hence, an individual model has the capability of a veto,
whereas in the linear opinion pool, the zero probability is
averaged out with other probabilities.

In this work, the α values in equations 1 and 2 are
dynamically computed on the basis of a parameter measuring
the quality of the feature in the vector F̃ . As proposed in [1]
each feature component of the vector F̃ has assigned a weight

W = (wc1 , wc2 , wc3 , wc4)
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such that |W | = 1. The deviation of the appearance fidelity
between consecutive frames for the i-th camera was then
defined as:

Di
F = Ω(|W ∗ (F̃ k

j − F̃ k−1
j |)

where Ω is a vectorial function that returns the largest element
among its arguments. Therefore, the α values in equations 1
and 2 were computed as follows:

αi = (1− Di
F

ΣM
j=1D

i
F

)

where M is the number of cameras having the considered
player in their field of view at the considered time instant (in
our experiments M=2). In this way the multi-view score takes
into account the robustness of the feature extracted from each
camera and then so the player’s activity performance is more
reliable than that obtained using a single view. Finally, in order
to take a final decision and automatically label each frame of
the test sequences containing a player involved in the play, a
learned threshold is used. The threshold was set as the mean
value of the log-likelihood output of the trained HMM when
the training sequences are provided as input.

V. EXPERIMENTAL RESULTS

The experiments were carried out on image sequences
acquired during a real soccer game of the Italian “Serie
A” championship. The HMM was trained using 4 pairs of
sequences relative to 4 different players involved in play and
acquired from opposite cameras. In particular the first pair of
sequences was relative to a player receiving and then carrying
the ball; the second pair was relative to a player shooting the
ball, the third one to a player trying to challenge the ball
carrier and, finally, the fourth pair was relative to a player
quickly running forward to receive a forward pass. The training
sequences were manually segmented and each of them was
50 frames long: actually, in the considered context, shorter
training sequences did not provide adequate information to
properly model the player activities and, on the other side,
longer sequences require complex HMM architecture that
usually are difficult to design and, in addition, often generate
over-fitting problems.

After the manual segmentation, for each patch of the train-
ing sequences (50 × 8 = 400 patches), the 11-dimensional
feature vector F described in section III was built. These
feature vectors were then used to generate the training data
matrix A (each feature vector is a row, producing a matrix A
sized 400× 11). As described in section III, the eigenvectors
of the matrix A were computed and the most significant
directions in data were pointed out. The first four principal
directions were then used to project initial training data
and to represent them by a new 4-dimensional vector F̃ of
uncorrelated features. Finally, the vectors F̃ were sequentially
provided to the HMM in order to model the temporal evolution
of the features corresponding to a player involved in play.

In figure 3 some patches extracted from the training se-
quences are reported. From left to right, players challenging

the ball carrier, quickly running forward, receiving the ball
from a teammate and shooting the ball are shown.

Fig. 3. Some patches extracted from the training sequences

The trained HMM was then tested on 10 pairs of sequences
having different length. The 20 test sequences were prelimi-
nary observed by a human operator in order to build the ground
truth of the player involvement in the play. In table I the ground
truth generated by the human operator is reported.

TABLE I
GROUND TRUTH RELATIVE TO THE 10 PAIRS OF SEQUENCES USED TO

TEST THE PROPOSED FRAMEWORK.

ID of the Cameras Length Frame intervals containing
pair of Sequences a player involved in play

1 3-4 1144 [65;158]
[225;265]
[530;600]

2 3-4 1150 [760;840]
3 1-2 965 [128;211]

[554;721]
4 1-2 482 [327;351]
5 3-4 687 [441;580]
6 3-4 954 [125;231]

[441;687]
7 5-6 447 [224;341]
8 1-2 258 [112;195]]
9 5-6 444 [224;341]
10 5-6 425 [124;376]

In figure 4 three pairs of patches relative to the same player
acquired by opposite synchronized cameras are shown. It is
possible to observe that the player appearances can strongly
vary depending on the position of the player with respect the
camera. This is particularly evident for the two patches on
the right in figure 4 in which the same player appears with
different sizes and strongly differs in his body configuration.

Fig. 4. Three pairs of patches extracted from opposite cameras and relative
to the same test sequence

During experimental tests, first of all the likelihood of player
involvement in the play from a single view was computed:
for each sequence a sliding window (50 frames long) was
used to select the portion of the sequence to be analyzed
and then for each selected patch the 11-dimensional feature
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vector F described in section III was computed. The feature
vector F was then linearly transformed by projecting it onto
the orthogonal basis defined statistically analyzing the training
data by the PCA method. The resulting 4-dimensional feature
vector F̃ was finally given as input to the trained HMM in
order to get the likelihood of observing, in the considered
temporal window, a player who is involved in the play.

In figure 5 the likelihood values (in logarithmic representa-
tion) relative to the sequences of the first pair in table I are
shown (the likelihoods of the two opposite cameras 3 and 4 are
reported). The lowest logarithmic likelihood values correspond
to the time intervals in which the player was most probably
involved in play. The differences between the two graphs
demonstrate how the same player is viewed differently by
the opposite cameras. To compare these behaviors we plotted
in figure 6 the two likelihood curves superimposed with the
ground truth. The red line is relative to the likelihood values
of the camera 3 and the blue line is relative to the likelihood
values of the camera 4. The three areas delimited by vertical
dot lines correspond to the frame intervals which the human
operator indicated as involved in the play (see first row in table
I).

0 200 400 600 800 1000 1200
80

100

120

140

160

180

200

220

240

Sequence 9107
F
G4

Frames

LO
G

 L
ik

el
ih

oo
d 

0 200 400 600 800 1000 1200
80

100

120

140

160

180

200

220

Sequence 9006
F
G3

Frames

LO
G

 L
ik

el
ih

oo
d

Fig. 5. The likelihood values computed for the two sequences of the first
row in table I. On the top the results obtained by the camera 3, on the button
the results obtained by the camera 4.

Then, as described in section IV, the likelihood scores
coming from opposite views and relative to the same player
were combined in order to get a multi-view likelihood score.
Two different strategies were tested, i.e. the log and linear
opinion pool described in section IV.

In figure 7 the deviation DF of the appearance fidelity
between consecutive frames for the sequence 1 acquired by
camera 4 is reported. The peaks in this plot represent the points
in which features are not reliable and the the α values have

Fig. 6. The two curves of figure 5 superimposed with the ground truth
intervals. The red and blue curves are relative to the cameras 3 and 4
respectively.

to give a greater weight to the opposite view. Figure 8 reports
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Fig. 7. Deviation of the appearance fidelity between consecutive frames for
the sequence 1 acquired by camera 4

the multi-view likelihood score computed by the log and linear
opinion pool formulas. These graphs are quite similar, anyway
in the following tables some different behaviors between the
two functions can be appreciated.

Fig. 8. Log opinion pool (top) and linear opinion pool (bottom) scores for
the first pair of sequences in table I.

In order to take the final decision about the player involve-
ment we used th = 123.0459 as a decision threshold, i.e. the
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mean value of the likelihood values obtained providing the 8
training sequences as input to the trained HMM. In figure 9
we report the output values of the trained HMM relative to
the eight training sequences (red point) and the corresponding
threshold value (red line) computed as their mean value.
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Fig. 9. The threshold value selected for the decision making process about
player involvement in play

The system performances for all the test sequences were
evaluated by using the following error measure E:

E =
FN + FP

F

where FN and FP are the number of false negative and
false positive labels and F is the total number of frames in
the considered sequence. In table II the results obtained on
10 pairs of test sequences using log pool score are reported
whereas in table III the corresponding results obtained using
linear pool score are reported.

TABLE II
THE RESULTS OBTAINED ON 10 TEST SEQUENCES USING LOG POOL

SCORE.

ID of the Number of Frames FN FP P
pair of Sequences

1 1144 25 33 0.05
2 1150 41 28 0.06
3 965 55 33 0.091
4 482 44 11 0.114
5 687 11 12 0.033
6 954 66 18 0.088
7 447 41 11 0.116
8 258 35 49 0.325
9 444 19 15 0.076

10 425 11 20 0.072
Overall 6956 348 230 0.083

Tables II and III demonstrate that the proposed approach can
discriminate in many cases if the players are involved or not in
the play. In addition it is possible to conclude that the choice
of pool score strategies did not alter the experimental results,
even if, in general the linear pool score lightly outperformed
the log pool score in many cases. Finally it is possible to
observe that, generally, wrong labeling occurred in presence
of misleading body configurations: for example, in the test
sequence number 7, most of the false positive occurrences
were generated because the player raised his arms (most

TABLE III
THE RESULTS OBTAINED ON 10 TEST SEQUENCES USING LINEAR POOL

SCORE.

ID of the Number of Frames FN FP P
pair of Sequences

1 1144 28 24 0.045
2 1150 37 26 0.054
3 965 46 38 0.087
4 482 29 19 0.099
5 687 18 18 0.052
6 954 38 14 0.054
7 447 32 13 0.100
8 258 31 25 0.217
9 444 22 18 0.090
10 425 18 22 0.094

Overall 6956 299 217 0.074

probably to draw a teammate’s attention). In that case the
system wrongly recognized the player as involved in the play
whereas the human operator did not. As clearly visible in
figure 10 the player body configuration of the player with
the arms raised (on the left) is very similar to that of a player
shooting the ball and included in the training sequences (on
the right).

Fig. 10. Two very similar patches however containing a player not involved
(on the left) and involved (on the right). )

VI. CONCLUSION

This paper presented a multi-view approach for performance
evaluation of soccer players by the analysis of the posture
evolution. Some body-appearance features have been extracted
and transformed in an uncorrelated vectorial space defined
by the Principal Component Analysis. The most significant
components have been used to model the player activity during
involved or not involved situations in the play. Continuous
Hidden Markov Models were used to model the temporal
evolution of the body features in a multiple views decision
making approach. The temporal model was finally used to
automatically recognize if a player was involved or not actively
in the play in 10 long test sequences. Experimental tests
carried out during Italian “Serie A” matches, demonstrated the
reliability of the proposed approach. Future works will deal
with a more detailed automatic player performance analysis
performed by introducing multiple HMMs to model different
activities as running, kicking, receiving the ball, and so on.
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