


II. DEPTH ESTIMATION

Disparity is the measure of difference in position of a

feature in one image compared to another image.

This can be used to infer the depth of the feature. Several

methods of estimating disparity exist and the crucial point in

this work is to have an accurate measurement to reliably de-

termine free space. Knowledge of the noise in the estimation

process can significantly improve the system. In our case the

distribution of noise has been found to be Gaussian in image

space and hence the Kalman filter [15] can be applied.

A. Iconic Kalman Filter

The Kalman filter is a recursive estimation method that

efficiently estimates and predicts the state of a discretized,

dynamic system from a set of potentially noisy measure-

ments such that the mean square error is minimized, giving

rise to a statistically optimal estimation. Only the previous

measurement and the current measurement are needed.

The general Kalman filter equations are not directly ap-

plicable to a stream of images without some additional

considerations. If an N � M disparity map was treated as a

single input to one Kalman filter the measurement covariance

matrix R would consist of (N � M)2 values, which quickly

becomes a prohibitively large number. To make an imple-

mentation feasible, each pixel is assumed independent and

consequently assigned a separate Kalman filter. A pixel-wise

Kalman filter is said to be iconic [18] [10].

The filter is applied to disparities, meaning it is the

disparity value that is estimated. The pixel coordinates are

still used when applying the motion model, but not Kalman

filtered. The state vector is therefore just a scalar, i.e. xt =
xt = dt .

State, Measurement and Motion Models: The measure-

ment is the disparity value supplied by the stereo camera.

When the camera moves, the previous disparity map will in

general not represent the new camera viewpoint. Since depth

is available for each pixel they can be moved individually

according to how the camera was moved, effectively predict-

ing the scene based on the previous disparity map and the

ego-motion information of the camera yielding two disparity

maps depicting the same scene from the same view point; a

prediction and a measurement.

The ego-motion in this context is linear in world space

but since image formation is non-linear, the motion becomes

non-linear in image space. The standard Kalman filter as-

sumes a linear system which means it cannot handle the

application of ego-motion when working in image space.

Therefore, the state prediction is handled outside of the

Kalman filter by triangulating the input into world space,

applying ego-motion as Xt = MRXt� 1 + MT (where MT is

translation and MR is rotation), and then back-projecting the

result into image space. The Kalman filter therefore only

handles the state variance.

Support for arbitrary camera poses is accomplished by

including a transformation of the ego-motion information to

the coordinate system of the camera, given as ωT and ωR

for translation and rotation, respectively.

The complete motion model will be referred to as the

function Φ(.):

xt jt� 1 = Φ(xt� 1jt� 1, MT , MR, ωT , ωR) (1)

Noise models: The process and measurement variance are

both scalars and assumed to be constant, i.e. Q = qd and

R = rd . The process variance qd reflects the confidence in

the predictions and is set to a small number to filter out

moving objects (e.g. 0.001). The measurement variance rd

represents the noise in the disparity values and is determined

by measuring the precision of the stereo camera. The Kalman

gain K is effectively a weighting between the prediction and

the measurement based on the relative values of qd and rd .

The state variance P is also a scalar, hence P = P. It

is initially set to rd , and from there on maintained by the

Kalman filter.

Predict Phase and Update Phase: The finished iconic

Kalman filter equations become:

Predict

xt jt� 1 = Φ(xt� 1jt� 1, MT , MR, ωT , ωR) (2)

Pt jt� 1 = Pt� 1jt� 1 +qd (3)

Update

Kt = Pt jt� 1

(

Pt jt� 1 + rd

)� 1
(4)

xt jt = xt jt� 1 +Kt

(

yt � xt jt� 1

)

(5)

Pt jt = (1 � Kt)Pt jt� 1 (6)

where x is the estimated state, Φ(.) is the motion model,

MT /MR is the ego-motion as translation/rotation matrices,

ωT /ωR is the translation/rotation of ego-motion to camera

coordinate system, P is the state variance, qd is the process

variance, y is the measurement variable, K is the Kalman

gain, and rd is the measurement variance.

Update Phase Merging: After the prediction phase has

completed and a new disparity map has been calculated, the

update phase begins. For each pixel, one of three scenarios

occur:

1) No measurement exists for the position of the predicted

pixel. The disparity present is simply kept as-is. A disparity

is only carried over a certain number of consecutive frames

before being discarded to prevent stale pixels from degrading

the result.

2) No predictions exists for the position of the measured

pixel, and the disparity is kept as-is.

3) Both exist. To filter out noise, a measurement is checked

against the prediction it is set to be merged with by applying

the Mahalanobis 3-sigma test [19]. If a measurement is

within three standard deviations (three times the square root

of rd) of the mean (the prediction) in a given Gaussian distri-

bution, it is merged with the prediction by the Kalman filter.

If it fails, it replaces the prediction only if the prediction

is young (to prevent spurious pixels from keeping correct

measurements out) or deemed stale (to filter out pixels that

have drifted).
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(a) Static scene. (b) Camera at 0� . (c) Camera at 65� . (d) Camera at 90� .

Fig. 3: Examples of the effect on density by Kalman filtering. The top row contains the original disparity maps while the

bottom row contains the Kalman filtered disparity maps. Black areas denote missing measurements. Fig. a is a static scene

while figures b-d are from a sequences with ego-motion.

In Fig. 3c, the camera is at a 65� angle. Note that areas

occluded in the original disparity map have an estimated

depth in the Kalman filtered version, leading to a denser

disparity map than would have been possible without ego-

motion.

In Fig. 3d, the camera is at a 90� angle. As in Fig. 3b, the

low lighting conditions yield sparse disparity maps. However,

the Kalman filtered disparity map is relatively more dense.

This is due to the lateral motion which leads to a greater

variation in the scene than forward motion and hence the

areas where estimation of disparity is possible varies more.

The predictive property of the Kalman filter then accumulates

these measurements over time.

A quantitative analysis of the difference in density caused

by Kalman filtering is presented in Table I. Ego-motion,

moving objects, and range of depth are all properties af-

fecting the obtainable improvement. The interesting number

is therefore the relative increase. Unfortunately, some of the

increase in density stems from keeping spurious measure-

ments, visible in the top center of Figure 3b and top left of

Figure 3d.

TABLE I: Absolute and relative increase in density before

and after Kalman filtering. A scene consists of 156,000 px.

Valid pixels Increase

Scene Before [px] After [px] Abs. [px] Rel. [%]

Lab, 8 m 82,185 121,589 39,404 47.95
Vehicle, 0� 73,588 100,800 27,212 36.98
Vehicle, 65� 117,378 135,850 18,472 15.74
Vehicle, 90� 60,404 99,333 38,929 64.44

Worthy of note is that the increase in density is from

prediction of actual measurements, and not e.g. interpolation.

C. Per-pixel Variance & Activity

The per-pixel variance map is an image where the intensity

of each pixel denotes the variance of that pixel. The variance

is the state variance maintained by the Kalman filter.

Fig. 4 shows the variance image for a static scene (Fig. 4a)

and for a scene with ego-motion involved (Fig. 4b). The

variances in the right image never decrease as much as in the

left image because the pixels do not live long enough for this

to happen. This variance of each pixel, along with their age

and no measurement count, is an indication of the reliability

of the estimate. This comes into effect when calculating the

occupancy grids.

Fig. 4 also contains two examples of activity maps. The

activity map of a scene is an overview of what operation each

pixel has undergone in the latest Kalman filter iteration. The

possible activities are:

� Red: “No measurement, prediction only”

� Yellow: “No prediction, measurement only”

� Orange: “Prediction and measurement merged”

� Blue: “Prediction replaced by new measurement”

Fig. 4c is the static scene. Most of the activity is merging,

indicated by the orange color. Fig. 4d is an example of an

activity map from a scene with motion. Notice the blue fringe

around the person, due to the predictions being replaced

by the new measurements. This is an indication of motion,

because the shift in disparity from one image to the next

is too large to be within the Gaussian distribution of noise

associated with the measurements. Hence, the pixels must

represent a different object than before, which means there

is motion in that area.

D. Occupancy Grid

Examples of occupancy grids can be seen in Fig. 5a-c

with corresponding segmented occupancy grid in Fig. 5d-f,
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(a) Variance for Fig. 3a. (b) Variance for Fig. 3c. (c) Activity for Fig. 3a. (d) Activity for Fig. 3c.

Fig. 4: Variance: Orange denotes high variance, blue denotes medium variance, and green denotes low variance. Activity: Red:

no measurement, prediction only. Yellow: no prediction, measurement only. Orange: Prediction and measurement merged.

Blue: Prediction replaced by new measurement.

1 px 500 px

0 m

57 m

(a) Full occupancy grid.

1 px 500 px

0 m

57 m

(b) Full occupancy grid.

1 px 500 px

0 m

57 m

(c) Default variance with unfiltered disparity
map.

(d) Segmented occupancy grid. (e) Segmented occupancy grid. (f) Segmented occupancy grid.

Fig. 5: The top row contains the full occupancy grids while the bottom row contains the resulting segmentation. Red: Low

likelihood. Blue: High likelihood. Black: No measurement. Notice the higher likelihood and greater coverage of the cells in

(b) as compared to (c). This is due to a lower variance for a large number of pixels, as well as the increased density.

respectively. The range of depth represented by the occu-

pancy grids is from 0 m to 57 m. Fig. 5a is the static scene

as in Fig. 3a, using the bottom disparity map. The depth is

limited; only the lower part of the occupancy grid is in use.

The upper cells, representing objects far away, are colored

by spurious measurements. In Fig. 5b (bottom Fig. 3c), the

full depth of the occupancy grid is in use.

Fig. 5c is like Fig. 5b but with the raw, unfiltered disparity

map of upper Fig. 3c used for calculating the occupancy grid.

The difference is noticeable with a more sparse occupancy

grid and lower likelihood of the cells. Likewise, the seg-

mented occupancy (Fig. 5f) grid shows significant change

compared to Fig. 5e.

E. Free Space

Fig. 6 shows four different scenes. First, the static scene

before (Fig. 6a) and after (Fig. 6d) free space has been

marked, using the disparity map in bottom Fig. 3a and the

segmented occupancy grid in Fig. 5d.

Fig. 6b, c, and e are captured with a moving camera.

Fig. 6b is with a frontal camera using the bottom disparity

map in Fig. 3b (occupancy grid not shown). Fig. 6c is with

the camera at a 65� angle using the bottom disparity map in

Fig. 3c and the segmented occupancy grid in Fig. 5e. Fig. 6e

is with the camera at a 90� angle, using the bottom disparity

map in Fig. 3d (occupancy grid not shown).

With dense disparity maps it is possible to determine the

accessibility of a greater number of pixels and hence a greater

area of the scene. Fig. 6c and f show the free space calcula-

tions of the same scene, based on the segmented occupancy

grids of Fig. 5e-f, respectively. Fig. 6f is with an unfiltered

disparity map (upper Fig. 3c), yielding a more sparse and

less accurate estimation of free space, demonstrating the end

effect of Kalman filtering the disparity maps.
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