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for Monitoring Driver Awareness
Erik Murphy-Chutorian, Member, IEEE, and Mohan Manubhai Trivedi, Fellow, IEEE

Abstract—Driver distraction and inattention are prominent
causes of automotive collisions. To enable driver-assistance sys-
tems to address these problems, we require new sensing ap-
proaches to infer a driver’s focus of attention. In this paper, we
present a new procedure for static head-pose estimation and a
new algorithm for visual 3-D tracking. They are integrated into
the novel real-time (30 fps) system for measuring the position
and orientation of a driver’s head. This system consists of three
interconnected modules that detect the driver’s head, provide
initial estimates of the head’s pose, and continuously track its
position and orientation in six degrees of freedom. The head-
detection module consists of an array of Haar-wavelet Adaboost
cascades. The initial pose estimation module employs localized
gradient orientation (LGO) histograms as input to support vector
regressors (SVRs). The tracking module provides a fine estimate of
the 3-D motion of the head using a new appearance-based particle
filter for 3-D model tracking in an augmented reality environment.
We describe our implementation that utilizes OpenGL-optimized
graphics hardware to efficiently compute particle samples in real
time. To demonstrate the suitability of this system for real driving
situations, we provide a comprehensive evaluation with drivers
of varying ages, race, and sex spanning daytime and nighttime
conditions. To quantitatively measure the accuracy of system,
we compare its estimation results to a marker-based cinematic
motion-capture system installed in the automotive testbed.

Index Terms—Active safety, graphics programming units, head
pose estimation, human-computer interface, intelligent driver as-
sistance, performance metrics and evaluation, real-time machine
vision, support vector classifiers, 3-D face models and tracking.

I. INTRODUCTION

V EHICULAR safety relies on the ability of people to
maintain constant awareness of the environment as they

drive. As new vehicles and obstacles move into the vicinity of
the car, a driver must be cognizant of the change and be ready
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to respond as necessary. Although people have an astounding
ability to cope with these changes, a driver is fundamentally
limited by the field of view that he can observe at any one time.
When a driver fails to notice a change to his environment, there
is an increased potential for a life-threatening collision. It is
reasonable to assume that this danger could be mitigated if the
driver is notified when these situations arise. As evidence to this
effect, a recent comprehensive survey on automotive collisions
demonstrated that a driver was 31% less likely to cause an
injury-related collision when he had one or more passengers
who could alert him to unseen hazards [1]. Consequently, there
is great potential for driver-assistance systems that act as virtual
passengers, alerting the driver to potential dangers through
aural or visual cues [2]. To design such a system in a manner
that is neither distracting nor bothersome, these systems must
act like real passengers, alerting the driver only in situations
where he appears to be unaware of the possible hazard. This
requires a context-aware system that simultaneously monitors
the environment and actively interprets the behavior of the
driver. By fusing information from inside and outside the
vehicle, automotive systems can better model the circumstances
that motivate driver behavior [3], [4].

With consideration for future driver assistance systems, we
concentrate on one of the integral processes for monitoring
driver awareness: estimation of the position and orientation of a
driver’s head. Head pose is a strong indicator of a driver’s field
of view and current focus of attention. It is intrinsically linked
to visual gaze estimation, which is the ability to characterize
the direction in which a person is looking [5], [6]. Intuitively,
it might seem that looking at the driver’s eyes might provide a
better estimate of gaze direction, but in the case of lane-change
intent prediction, for example, head dynamics were shown to
be a more reliable cue [7]. In addition, implementing a vision
system that focuses on a driver’s eyes is impractical at many
levels. In addition to the economic and technical challenges
of integrating and calibrating multiple high-resolution cameras
placed throughout the cabin (to view the eye from all head
positions), it requires that the driver’s eyes be visible at all times
(e.g., sunglasses or other eye-occluding objects would cause
the system to malfunction). Furthermore, we believe that the
eyes can convey only the gaze direction relative to the direction
of the head. Physiological studies demonstrate that this is
clearly the case for human perception [8], and computational
eye trackers typically require the subject to maintain a frontal
head pose.
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Computational head pose estimation remains a challeng-
ing vision problem, and there are no solutions that are both
inexpensive and widely available. Among the research thrusts
and commercial offerings that can provide a real-time esti-
mate of head pose, most require multiple cameras to obtain a
correspondence-based depth information, and none have been
rigorously and quantitatively evaluated in an automobile. In a
car, ever-shifting lighting conditions cause heavy shadows and
illumination changes, and as a result, techniques that demon-
strate high proficiency in stable lighting often will not work in
these situations.

The novelty of this paper is threefold: First, we introduce
a new procedure for head pose estimation and a new algo-
rithm for 3-D head tracking. Second, we provide a systematic
implementation of these two to create a hybrid head-pose
estimation system. In this computational system, we only use
a single video camera and provide a real-time (30 fps) imple-
mentation by optimizing the calculations for the parallel proces-
sors available on a consumer graphic processor. Third, we
quantitatively demonstrate the success of this system on the
road, comparing our markerless monocular head-pose estimator
to ground truth obtained with a professional cinematic motion-
capture system that we have configured for a vehicular testbed.
To ensure a wide variety of driving conditions, we perform
these experiments with drivers of varying age, race, and sex
spanning daytime and nighttime drives.

In designing our system, we strove for a cost-efficient pro-
totype that could be reasonably adapted for widely deployed
automobiles. Although our prototype has been implemented
in a full-size PC, the current evolution of embedded proces-
sors (and embedded graphics processors) would be the natural
progression for the future of this technology. Our system was
designed to meet the following design criteria:

1) Monocular: The system must be able to estimate head
pose from a single camera. Although accuracy might be
improved with stereo imagery, multiple cameras increase
the cost and complexity of the system, and they require
manual calibration that can drift as a result of vibrations
and impacts.

2) Autonomous: There should be no manual initialization,
and the system should operate without any human inter-
vention. This criterion precludes the use of pure-tracking
approaches that measure the relative head pose with
respect to some initial configuration.

3) Fast: The system must be able to estimate a continuous
range of head pose while driving, with real-time (30 fps)
operation.

4) Identity and Lighting Invariant: The system must work
across different drivers in varying lighting conditions.

II. PRIOR WORK

Recently, there has been a great interest in driver-assistance
systems that use computer vision technology to develop safer
automobiles [3]. Within this scope, a large area of focus has
been to direct cameras inside the vehicle and interpret the
driver’s state from video observations.

Fig. 1. Our hybrid head-pose-estimation scheme combines a static head-
pose estimator with a real-time 3-D model-based tracking system. The static
estimator initializes the tracker and provides periodic consistency checks as the
two operations run in parallel.

In one prime example, the driver’s eye closure blink fre-
quency, nodding frequency, and 2-D face position have been
used to estimate driver attentiveness [9]. This system uses
infrared illuminators and Kalman filters to track the driver’s
pupil and a fuzzy classifier to provide an overall estimate of at-
tentiveness. In another system, the driver’s eyes and lip corners
were initialized with color predicates and tracked in relation to
a bounding box around the driver’s head [10]. This was shown
to provide an estimate of the driver’s gaze as well as to estimate
the driver attentiveness level using finite-state machines.

Driver head-motion estimation has also been used along with
video-based lane detection and CAN bus data to predict the
driver’s intent to change lanes in advance of the actual move-
ment of the vehicle [11]. This paper supplied these cues to a
sparse Bayesian learning classifier that provides a probabilistic
prediction of a lane change seconds in advance.

All these previous works use a coarse estimate of head
motion as the input to a classifier that estimates an aspect of the
driver’s intent. In contrast, our system provides a fine absolute
measure of the driver’s head position that can directly be used
to indicate the driver’s focus of attention. As a result, we have
put great attention into ensuring that the system is robust to
variations in lighting and driver’s appearance, and we have
evaluated the accuracy of this system in varying conditions.

Our contributions in this paper also include new algorithms
for head pose estimation and tracking, and we present a review
of prior works in this area.

Our system is a hybrid approach that combines the initial-
ization and stability properties of a static pose estimator with
the highly accurate, jitter-free, and real-time capabilities of a
tracking approach. The static estimator initializes the tracker
from a single image frame and, as the head is tracked, continues
to run in parallel, providing a periodic consistency check. If the
tracking confidence falls below a threshold or the consistency
check fails, then the static estimator automatically reinitializes
the tracker. This process is illustrated in Fig. 1. Although very
different in composition and scope, other works have espoused
the advantages of hybrid systems [12]–[15].

The static head-pose estimator that we have developed is
a nonlinear regression technique that directly estimates the
head pose from a detected image patch. Nonlinear regression
approaches provide continuous estimates of pose and have the
some of the highest reported success in indoor environments
[12]. Prior work in this area includes locally linear maps [16],
multilayer perceptrons [17], and principal component analysis
(PCA) projection with support vector regression [18]. From our
experience with nonlinear regressors, we have observed that
the most significant problem with these approaches is their

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on August 06,2010 at 21:41:45 UTC from IEEE Xplore.  Restrictions apply. 



302 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 11, NO. 2, JUNE 2010

sensitivity to localization error. With noisy face localization
(as is common with computational face detectors), the accu-
racy of these approaches diminishes. In our investigations, we
found that we can mitigate this problem by using localized
gradient orientation (LGO) histograms as the input to nonlinear
regressors. These histograms provide explicit invariance to face
localization error, as well as added invariance to lighting and
appearance variation. In this paper, we provide experimental
evaluation of the improvement in pose estimation by extracting
these histograms.

Unlike static head pose estimation techniques, head tracking
approaches operate on continuous video, estimating head pose
by inferring the change in pose between consecutive frames
of a video sequence. These approaches exploit the temporal
continuity and smooth motion constraints to provide a jitter-
free estimate of pose over time. These systems typically demon-
strate much higher levels of accuracy than static pose estimation
methods, but they require initialization from a known head
position and are prone to drifting and losing track. Our system is
an example of a top-down tracking approach that finds a global
transformation that best accounts for the observed motion be-
tween video frames. With stereo imagery, for instance, the head
pose can also be obtained with affine transformations by find-
ing the translation and rotation that minimize the discrepancy
in grayscale intensity and depth [14]. In addition to finding
the transformation that minimizes the appearance between the
model and the new camera frame, systems can also incorporate
prior information about the dynamics of the head. Particle filters
provide an approximation of the optimal track by maximizing
the posterior probability of the movement from a simulated set
of samples. Variations on particle filtering have been applied
to head accurate real-time head-pose tracking in varying envi-
ronments, including near-field video [19], low-resolution video
with adaptive PCA subspaces [20], and near-field stereo with
affine approximations [21], [22]. In this paper, we introduce a
new dual-state particle filter to explicitly model the nonlinear
motion of a driver. This motion model is able to simultaneously
account for the observed jitter of a driver’s head and the driver’s
intentional head movements. Compared with other particle
tracking approaches, we have overcome many simplifications
and limitations such that we have the following.

1) We only require monocular video, satisfying our design
criterion and preventing the need for periodic stereo
calibration.

2) We compute full projective transformations of the model,
rather than affine approximations, improving perfor-
mance by removing an artificial source of distortion.

3) We use a full textured-mapped 3-D model instead of
a series of point samples, allowing a more complete
comparison between the model and the observation.

4) We provide a real-time implementation, satisfying our
design criterion for 30-fps tracking.

The system that we present in this paper is a novel software
engine that advances the state of the art in fully autonomous
head-pose estimation. This system has practical utility for many
applications including intelligent meeting spaces [23], and in
this paper, we focus our efforts on the automotive domain.

Fig. 2. Overview of our static head-pose-estimation procedure consisting of
three steps: 1) The head is detected with a trio of cascaded Adaboost detectors.
2) An LGO histogram is extracted from the cropped head region. 3) The
histogram is passed to SVRs for pitch, yaw, and roll.

To demonstrate the capacity of our system, we evaluated it
on a wide range of natural driving situations with a cinematic
motion-capture system providing a quantitative comparison.
Although there have been other head-pose-estimation systems
that have been applied to automotive imagery [24]–[29], they
have been evaluated when the car is moving in specific scenar-
ios only in situations where the car is not moving (indoors). It
is unclear whether these approaches would require substantial
modification to become viable options for real automotive use.
In contrast, the data collection and evaluation that we have
conducted in this paper are the first their kind, and we are able
to demonstrate that our system attains a high level of accuracy
during real-world driving.

The remainder of this paper is structured as follows:
Section III details our methods for head detection and static
head-pose estimation. Section IV introduces our augmented-
reality head-tracking algorithm. Section V describes our hybrid
head pose system and the real-time implementation of the
tracker using optimized consumer-grade graphics hardware.
Section VI introduces our automotive testbed and presents an
evaluation of our methods. Section VII contains our concluding
remarks.

III. FACE DETECTION AND HEAD-POSE ESTIMATION

In the first stage of our system, we compute an initial estimate
of the driver’s head position and orientation. This consists of the
following three steps.

1) A facial region is found using three cascaded Adaboost
[30] face detectors applied to the grayscale video images.

2) The detected facial region is scale normalized to a fixed
size and used to compute an LGO histogram.

3) The histogram is passed to three support vector regressors
(SVRs) trained for head pitch, yaw, and roll.

A graphical overview of this procedure is presented in Fig. 2.
It is run once to initialize the tracker and periodically repeated
to check the consistency of the tracking estimate. In this follow-
ing paragraphs, we describe these steps in more detail.

A. Facial Region Detector

To detect the location of the driver’s head, we use three
Adaboost cascades attuned to the left profile, frontal, and right
profile faces [30], [31]. Each detector is capable of recognizing
heads with enough deviation from its characteristic pose that
when combined, they span the range of head poses in our
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Fig. 3. Comparison of static head-pose estimation using the following meth-
ods: (A) NCC prototype matching. (B) Gradient PCA with support vector
regression [18]. (C) LGO histograms with support vector regression. (D) Vicon
motion capture ground truth. The center rectangle indicates the detected facial
region using a trio of cascaded Adaboost face detectors, and the pose for each
method is indicated by the direction of the thumbtack.

training data: −30◦ to 30◦ in pitch and roll −90◦ to 90◦ in yaw.
For both training and testing, an uncompressed grayscale image
is used as the input to the detectors, and we consider the largest
detected rectangular region as the location of the driver’s face.
To ensure that the static pose estimation process is invariant to
scale, every region is down sampled to a fixed size of 34 ×
34 pixels. In an automobile, this makes the system invariant
to the distance between the driver and the camera. In our
experiments, this facial-detection scheme successfully detected
a region in approximately 90% of the video frames. For the
remaining frames, the initialization or consistency check is
simply skipped until the next successful detection. No effort
was made to prune false detections, although one could envision
a production system with heuristics based on size, position,
and color. From our experience with these detectors in driving
video, false detections are quite rare, but when they do occur,
the pose estimates are clearly incorrect until the next successful
face detection. The detection examples are illustrated in Fig. 3.

B. LGO Histogram

To provide a robust description of each facial region, we
compute the LGO histogram. A fixed-size version of this
representation was first presented as part of the scale-invariant
feature transform [32], which is intended for correspondence
matching between regions surrounding scale- and rotation-
invariant keypoints. It is a compact feature representation that
is robust to minor deviations in region alignment, lighting, and
shape [32], [33]. This is useful for automatic head pose esti-
mation, since the explicit position invariance of the histogram
offsets some of the localization error from the face detector. Ad-
ditionally, the histogram is invariant to affine lighting changes,
and the gradient operation emphasizes edge contours that are
less influenced by identity than image texture. The merit of
the generalized histogram has been demonstrated for human
detection, where it has alternatively been called a histogram
of oriented gradients [34]. In contrast to object recognition
systems that represent an object as a configuration of multiple
histogram descriptors [32], we use a single LGO histogram
to represent the entire scale-normalized facial region. This
descriptor consists of a 3-D histogram. The first two dimensions
correspond to the vertical and horizontal positions in the image

and the third to the gradient orientation. For an M × N × O
histogram, let the triplet (m,n, o) denote a specific bin in
the histogram. The horizontal and vertical image gradients
Xx(x, y) and Xy(x, y) are approximated by filtering with
3 × 3 pixel Sobel kernels. The image is then split into M × N
discrete blocks, and for each pixel (x, y) in the (m,n) block,
the absolute gradient orientation ox,y is quantized into one of O
discrete levels

ox,y =
⌊
O ×

(
1
2π

atan2 (Xy(x, y),Xx(x, y)) + 0.5
)⌋

(1)

and used to increment the (m,n, ox,y) histogram bin. After
computing the histogram, it is smoothed with the 3 × 3 ×
3 kernel as

K(m,n, o) =
(

1 − g(m)
M

) (
1 − g(n)

N

)(
1 − g(o)

O

)
(2)

to prevent aliasing effects, where {m,n, o ∈ B} for B =
{−1, 0, 1}, and g(·) is the complement impulse function

g(λ) =
{

0, if λ = 0
1, if λ �= 0.

(3)

The resulting soft histogram is subsequently reshaped and
normalized to a unit vector. Finally, as suggested by Lowe [32],
any vector component greater than 0.2 is truncated to 0.2, and
the vector is renormalized if necessary. In our system, we use a
128-D vector, where M = 4, N = 4, and O = 8.

C. Support Vector Regression

To estimate the pose of the driver’s head, we use support
vector regression on the LGO histogram inputs. Support vector
regression is a supervised learning technique for the nonlinear
regression of a scalar function [35], [36].

An optimized software package [37] was used to train our
system with radial basis function kernels. We generated three
regressors trained for head pitch, yaw, and roll. The input to
each is the LGO histogram described in Section III-B. To
find the optimum regression parameters, we scale normalize
each component of the input data such that it spans the range
[−1, 1] and then perform a cross-validation grid search across
the parameter space. During testing, we use the same scaling
parameters to normalize the new input before predicting the
new pose.

IV. HEAD-POSE TRACKING IN AUGMENTED REALITY

We introduce a new procedure to track the driver’s head in
six degrees of freedom at 30 fps from a single video camera.
Our approach uses an appearance-based particle filter in an
augmented reality, which is a virtual environment that mimics
the view space of a real camera [23]. Using an initial estimate
of the head position and orientation, the system generates a
texture-mapped 3-D model of the head from the most recent
video image and places it into the environment. The model is
subsequently rotated, translated, and rendered in perspective
projection to match the view from each subsequent video
frame. It would be computationally inefficient to exhaustively
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search for the best transformation, so instead, we introduce an
appearance-based particle filter framework to generate a set of
virtual samples that together provide an optimal estimate of this
transformation. The virtual samples are perspective projections
of the head model at a specific rotation and translation and
resemble small perturbations of the driver’s face set against a
solid background.

Although the 3-D construction and evaluation of these sam-
ples is a daunting computational challenge for a conventional
computer processor, we show that it can be highly optimized
for graphic processing units (GPUs), and we describe our real-
time implementation that utilizes the 3-D virtualization and
processing capabilities of a consumer-level GPU.

This section is organized in the following manner. Part A
describes our dual-state motion model, and Part B details our
particle-filtering approach to update this model.

A. State Model

We represent the driver’s head as a rigid object constrained to
six degrees of freedom in a 3-D world. This can be represented
with respect to a fixed Cartesian coordinate system by the
position, (x, y, z) and Euler angles (α, β, γ). To model the
system using linear dynamics, we could define the state

xt =
[

θt

ωt

]
(4)

where θt = [xt, yt, zt, αt, βt, γt]T represents the position and
angle of the object at time t, and ωt represents the respective
linear and angular velocity. In our head tracking application,
however, motion is not well described by a linear system.
Consider the typical motion of a person’s head bobbling about
in an automobile. For the most part, the subject is focused
on a single location in the world, and his head is essentially
static, subject only to small perturbations that can appear to
be instantaneous when viewed at a sampling rate defined by
a video camera. Only when the person conscientiously moves
their head from one position to another can linear dynamics
provide a good temporary approximation of the motion. The
first situation can be modeled with a zero-velocity state model

x
(ZV )
t =

[
1 0
0 0

]
xt−1 +

[
νt

0

]
(5)

where νt is a vector-valued random sample from an indepen-
dent and identically distributed (i.i.d.) stochastic sequence that
accounts for small instantaneous displacements of the head.
The second situation can be described by a constant-velocity
model

x
(CV )
t =

[
1 1
0 1

]
xt−1 +

[
0
ηt

]
(6)

where ηt is a vector-valued sample from another i.i.d. stochas-
tic sequence that accounts for any change in velocity of the
head. At a practical level, we do not need to estimate whether
the head is in a zero-velocity or constant-velocity mode, since
we are only interested in the position and orientation of the
head. Instead, these two models simultaneously constitute a
mixed prior probability for the motion of the head.

To accommodate both of these motion models, we define the
augmented state

yt = {xt, ξt} (7)

where ξt is a binary variable {ξt : ξt ∈ 0, 1} that specifies the
head motion model at time t as

xt = (1 − ξt)x
(ZV )
t + ξtx

(CV )
t . (8)

We can model ξt as a Markov chain, drawing each new sample
from a probability distribution f(·) that only depends on the
previous state

ξt ∼ f(ξt | ξt−1). (9)

Given this Markov property and the construction of (8), yt is
also a Markov process

p(yt|y0, . . . ,yt−1) = p(yt |yt−1). (10)

In a classical tracking problem, the object’s state yt is
observed at every time step but assumed to be noisy; hence,
the optimal track can be found by maximizing the posterior
probability of the movement given the previous states and
observations. For a Markovian system that is perturbed by
non-Gaussian noise, a sampling importance resampling (SIR)
particle filter offers a practical approach that approximates the
optimal track as a weighted sum of samples. These samples
are drawn from the state transition density [see (10)], and
the weight is set proportional to the posterior density of the
observation given the samples. In our vision-based tracking
problem, instead of observing a noisy sample of the object’s
state, we observe an image of the object. The observation noise
is negligible, but the difficulty lies in inferring the object’s
state from the image pixels. The solution to this problem can
be estimated using a similar SIR construction. We generate
a set of state-space samples and use them to render virtual
image samples using the fixed-function pipeline of a GPU.
Each virtual image can directly be compared with the observed
image, and these comparisons can be used to update the particle
weights.

Given the existence of a set of N samples with known states
{y(l)

t : l ∈ 0, . . . , N − 1}, we can devise the observation vector

zt =

⎡
⎢⎢⎣

d
(
yt,y

(0)
t

)
...

d
(
yt,y

(N−1)
t

)
⎤
⎥⎥⎦ (11)

where d(y,y′) is an image-based distance metric. As with
a classical SIR application, we are required to maintain and
update a set of samples with a known state at every time step.
We use these samples to update our observation vector, and
with (10) and (11), we note that the observation is conditionally
independent of all previous states and observations given the
current state

p(zt |y0, . . . ,yt,z0, . . . ,zt−1) = p(zt |yt). (12)

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on August 06,2010 at 21:41:45 UTC from IEEE Xplore.  Restrictions apply. 



MURPHY-CHUTORIAN AND TRIVEDI: DRIVER AWARENESS MONITORING 305

As a potential image comparison metric, normalized cross
correlation (NCC) provides an appealing approach for compar-
ing two image patches, having the desirable property that it is
invariant to affine changes in pixel intensity in either patch.
Given two image patches specified as M -dimensional vectors
of intensity φ and φ′, we can specify an NCC-based distance
metric as follows:

dNCC(φ,φ′) = 1 − 1√
σ2

φσ2
φ′

M−1∑
i=0

(φi − μφ) (φ′
i − μφ′) (13)

where μφ is the mean of the intensity, and σ2
φ is the variance

of the intensity. The unit constant and the minus sign are
introduced to provide a positive distance measure in the range
[0, 2].

When the lighting variation is nonaffine (e.g., specular reflec-
tions, shadowing, etc.), NCC poorly performs as a global image
metric, since the transformation cannot be modeled by a global
dc offset and scaling. If the image patches are small enough,
however, then it is likely that they will be locally affine. As a
consequence, better invariance to globally nonuniform lighting
can be gained by using the average of a series of P small image
patch NCC comparisons spread out over the object of interest.
This is the basis of the mean NCC (MNCC) metric that we use
in our tracking system as

d(y,y′) =
1
P

P−1∑
p=0

dNCC

(
φp,φ

′
p

)
. (14)

We can directly relate these comparisons to the conditional
observation probability if we can model the distribution such
that it only depends on the current sample

p
(
zt

∣∣∣ y
(l)
t

)
∝ h

(
zt,l,y

(l)
t

)
(15)

where zt,l is the lth component of zt, and h(·, ·) is any valid
distribution function.

In our head tracking system, we model the observation
probability as a truncated Gaussian envelope windowed by the
displacement between the current sample state and the sample
with the smallest MNCC distance. Denote this latter sample as

y
(∗)
t =

{
y(l) : l = argmax

l
zt,l

}
(16)

and define the state displacement as

s(y,y′) = dP (y,y′) + α dA(y,y′) (17)

where dP (·, ·) is the Euclidean distance between the position of
the samples, and dA(·, ·) is the angular displacement computed
from the inverse cosine of the inner product of a quaternion
representation of each sample’s orientation. α is a parameter
that scales the relative contribution of each measure. From these
definitions, we formally define our distribution model as

ht(z,y) =

⎧⎪⎨
⎪⎩

0, Tz < z

0, Ts < s
(
y,y

(∗)
t

)
exp

(
− 1

2σ2 z2
)
, otherwise

(18)

where Tz and Ts are scalar thresholds, and σ is the standard
deviation of the envelope. From qualitative analysis, we use the
following parameters in our head tracking system: α = 0.01,
Tz = 0.8, Ts = 0.012, and σ = 0.045.

B. SIR

A particle filter is a Monte Carlo estimation method based
on stochastic sampling [38], [39] that, regardless of the state
model, converges to the Bayesian optimal solution as the num-
ber of samples increases toward infinity. The concept is to
choose an appropriate set of weights and point samples{(

c
(l)
t ,y

(l)
t

)
: l ∈ 0, . . . , N − 1

}
(19)

such that the a priori expectation of the state yt can be
approximated from the weighted average [40]

E [yt |z0, . . . ,zt] ≈
N−1∑
l=0

c
(l)
t y

(l)
t . (20)

Let p(y0:t|z0:t) be the posterior probability distribution for
all states up until time t. The samples can be drawn from an
arbitrary importance distribution π(y0:t|z0:t), and the approx-
imation is valid as long as the weights c

(l)
t are proportional to

the ratio between the posterior probability distribution and the
importance distribution and

∑
l c

(l)
t = 1.

If we were to continue updating the sample weights, after
only a few frames, most of the particle weights would approach
zero. To practically account for this, we use a SIR filter that re-
samples the particles after every iteration. This is accomplished
by drawing a new set of samples {y(l)

t : l ∈ 0, . . . , N − 1}
from the distribution function

ρ
(
yt

∣∣∣c(0:N−1)
t ,y

(0:N−1)
t

)
=

N−1∑
l=0

c
(l)
t δ

(
y

(l)
t − y

(l)
t

)
(21)

where δ(·) is the Kronecker delta function. After each resam-
pling, the weight of each new sample is set to 1/N . Given
our probabilistic model and choice of π(y(l)

t |y(l)
0:t−1,z0:t) =

p(y(l)
t |y(l)

t−1), the weight update equation can be reduced to

c
(l)
t ∝ c

(l)
t−1p

(
zt|y(l)

t

)
. (22)

A full iteration of the SIR filter can be described as follows:
1) Update samples: y

(l)
t ∼ p(yt |y

(l)
t−1).

2) Calculate weights: c
(l)
t =(p(zt|y(l)

t )/
∑N−1

l=0 p(zt|y(l)
t )).

3) Estimate current state: x̂t =
∑N−1

l=0 c
(l)
t x

(l)
t .

4) Resample: y
(l)
t ∼ ρ(yt|c

(0:N−1)
t ,y

(0:N−1)
t ).

V. HYBRID SYSTEM IMPLEMENTATION

Our proposed system uses a hybrid pose estimation scheme,
combining our static head pose estimator procedure with a
real-time implementation of our 3-D model-based tracking
algorithm. The static estimator initializes the tracker from a
single image frame and, as the head is tracked, continues to
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Fig. 4. Flowchart illustrating one iteration of our head tracking procedure.
There are four potential results of each iteration denoted with the phase “stop
iteration.”

run in parallel, providing a periodic consistency check. If the
tracking confidence falls below a threshold or the consistency
check fails, then the static estimator automatically reinitializes
the tracker. An overview of the full hybrid system is illustrated
in Fig. 4.

A. Camera Perspective

The tracking system has been optimized to run on a GPU.
First, we use the intrinsic parameters from our camera to model
the perspective projection in the augmented reality. To correctly
model the perspective projection of our camera, we must mimic
the intrinsic camera parameters in our virtual environment. A
camera can be modeled as an ideal perspective camera subject
to spherical lens distortion. We refer the reader to [41] for
more information. Many software packages are available to
estimate and remove the distortion as well as estimate the
intrinsic camera parameters that specify a linear projection from
world coordinates into camera coordinates. We have calibrated
our cameras using checkerboard calibration patterns and the
facilities available in the OpenCV software library [42]. Each
camera frame is undistorted before any further processing.

To project a 3-D model into the image plane with the same
perspective distortion of the camera, we modify the set of
projection matrices that define how a point in the virtual world
is projected onto a rectilinear image, known as the viewport. In
OpenGL, this is accomplished using two matrices:

1) ModelView matrix—A linear transformation that ac-
counts for the position and direction of the camera rel-
ative to the model.

2) Projection matrix—A linear transformation that projects
points into the viewport as clip coordinates. The parame-
ters of this matrix affect the projection similar to how a
lens affects a camera.

The conversion from an intrinsic matrix to the ModelView
and Projection matrices requires a conversion from world
coordinates to the normalized view volume coordinates used

Fig. 5. (Left) Rigid facial model using for initialization and tracking.
(Right) Example of the model as rendered by the tracking system.

by OpenGL. We refer the reader to [43] for details on this
conversion.

B. 3-D Model

We represent the driver’s head in our augmented reality
framework as a texture-mapped 3-D model. The model consists
of 3-D vertices that define a set of convex polygons approxi-
mating the surface of the head. Each vertex is assigned a texture
coordinate that corresponds to a position in a 2-D image texture.

To create a new model and place it in the environment, we
require a new set of polygons and an image texture. For our
approach, we use a rigid anthropometric head model shown
in Fig. 5. This model was created from a person excluded
from the driving experiments, and although this single model
is only an approximation of the facial shape of each driver,
the texture-based tracking approach does not require a highly
accurate fit. We show this in Section VI by comparing the rigid
model to individualized models obtained by correspondence-
based stereo vision. Once the model is textured, it is placed
in the virtual environment with an inverse projection that puts
it at the depth that corresponds to the observed width of the
detected face. The static pose estimate is used to assign the
initial pose angles. To ensure a symmetric view of the head,
we only initialize the model if the estimated head pose is within
25◦ of the center; otherwise, the initialization is skipped until
this constraint is satisfied.

C. Sample Generation and GPU-Based MNCC

After each new video frame is captured, it is copied into a
texture object on the GPU. For each sample in the particle filter,
we generate a virtual representation of the model and calculate
the sample weight. To begin, the 3-D head model vertices
are rotated and translated as described by the sample state.
Next, the model is rendered to an off-screen framebuffer object
using the fixed-function GPU pipeline (i.e., the basic procedure
for rendering an object with the graphics API). Computing
the MNCC distance metric described in (14) requires many
computationally intensive pixel calculations. To obtain real-
time speeds, we perform the calculation with the programmable
pipeline of the GPU using the OpenGL Shading Language [44].
We render the vertices as individual points that compute the
NCC of a local image patch using the programmable pipeline.
More specifically, we compute the NCC with a vertex shader,
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Fig. 6. LISA-P experimental testbed is a modified Volkswagen Passat
equipped with a mobile computing platform and sensors for motion and video
capture [45].

which is a program that operates on each vertex as it passes
through the GPU pipeline. This enables hundreds of NCC
windows to be computed in parallel. A full description of this
GPU optimization is available in [43].

VI. DATA AND EVALUATION: LABORATORY FOR

INTELLIGENT AND SAFE AUTOMOBILES-P TESTBED

The Laboratory for Intelligent and Safe Automobiles
(LISA)-P experimental testbed, as shown in Fig. 6, is used
to collect real-world test data. The vehicle is a modified
Volkswagen Passat. An IEEE1394 camera mounted on the
windshield is used to capture face data, as shown in Fig. 6. This
camera captures a 640 × 480 pixel grayscale video stream at
30 fps, and like most CCD imagers, it is naturally sensitive to
both visible and near-IR light. For our specific camera, we were
required to physically remove an IR filter installed above the
imager.

For the purpose of illuminating the driver’s face and stabiliz-
ing the lighting conditions at nighttime, a near-IR illuminator
(light-emitting-diode array with plastic diffuser) was placed on
the leftmost part of the windshield. Since the emitted light is not
part of the visible spectrum, it does not serve as a distraction
or cause any glare for the driver. In addition, the vehicle is
instrumented with a Vicon optical motion capture system, with
five sensors placed in various locations around the driver’s head.
This marker-based system is used to gather precise ground
truth head pose data for evaluation. To prevent the reflective
markers from appearing in the video, we created an unobtrusive
headpiece for the subjects to wear on the back of their head, as
shown in Fig. 6.

For the automotive experiments, we asked 14 subjects to
drive the LISA-P while wearing the motion capture headpiece.
The subjects consisted of 11 males and three females, span-
ning Caucasian, Asian, and south-Asian descent. The subjects
ranged from 15 to 53 years of age, and five of them wore
glasses.

Each of the subjects drove the vehicle on different round-trip
routes through the University of California campus at different
times, including drives from the morning, afternoon, dusk, and
night. The cameras were set to autogain and autoexposure, but
these adjustments have to compete with ever-shifting lighting

TABLE I
COMPARISON OF MEAN ABSOLUTE ERROR BETWEEN HEAD POSE

ESTIMATION APPROACHES

conditions, and dramatic lighting shifts (e.g., sunlight diffract-
ing around the driver or headlights from a neighboring vehicle)
on occasion would completely saturate the image. All of these
situations remain part of our experimental data, as they are
typical phenomena that occur in natural driving.

The automobile was set up to collect data during two periods:
1) half during the summer and 2) half during the winter. The
placement of the cameras mildly varies between these two
setups. The drives averaged 8 min in duration, amounting to
approximately 200 000 video frames in all.

Experiment 1—Static Head Pose Comparison: We compare
our static head pose estimation procedure to two alternative
approaches for estimating the pitch and yaw of the driver’s
head. The first is a prototype matching scheme that uses NCC
to compare the driver’s face to each of the views in our training
data. To make the system more robust to noise, we take the
mean of the cross-correlation score for all the training images
that share the same discrete pose, and we estimate the head pose
as the pitch and yaw corresponding to the maximum score after
bicubic interpolation.

The second comparative head pose estimation system is
our implementation of the gradient PCA system described by
Li et al. [18]. We chose this work for comparison since it is
the most similar to our proposed system and it is capable of
high accuracy and speed. This approach also uses two SVRs to
estimate pitch and yaw. Instead of LGO histograms, the input to
each regressor is the raw horizontal and vertical image gradient
reduced to a 50-D vector using principal component analysis.
The PCA basis is derived from the training data.

For both of these comparative approaches, we use the same
array of Adaboost cascades described in Section III-A to locate
and normalize the region of the image corresponding to the
driver’s face.

The data used for this evaluation is a 1-min excerpt from
each of the six drives: two during the daytime and four during
the nighttime. In addition, we provide a comparison for an
indoor scenario to evaluate whether the differences between the
algorithms are specific to the automotive imagery. For indoor
experiments, ten people were asked to sit on a chair against
a white background while facing an IEEE1394 video camera.
Behind the camera, a projector displayed a grid of points on
a screen in front of the subject, each point representing a
specific pose at 5◦ intervals spanning (−30◦, 20◦) in pitch and
(−80◦, 80◦) in yaw. Within this grid, we displayed an active
cursor, which corresponds to the subject’s current head pose
as measured by the motion capture system. When a subject
moved his/her head to any of the 363 grid point locations for the
first time, the point would change color, and the camera would
capture an image of the subject. In this fashion, we obtained a
uniform sampling of all ten subjects across the pose space.

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on August 06,2010 at 21:41:45 UTC from IEEE Xplore.  Restrictions apply. 



308 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 11, NO. 2, JUNE 2010

The results of these experiments are found in Table I. Here,
we quantify each approach by the mean absolute error in
pitch and yaw between the motion capture reference and the
estimated orientation. In the laboratory experiment, all three
systems provide a comparable level of error in pitch, and the
LGO histograms demonstrate a 7.06◦ reduction in yaw error
over the gradient PCA approach and a 14.85◦ reduction over
the NCC approach. In the driving experiments, our algorithm
again outperforms the other approaches in absolute yaw error:
9.28◦ compared with 14.90◦ and 12.19◦ during the daytime
experiment, and 7.74◦ compared with 16.49◦ and 13.11◦ during
the nighttime drives. We attribute the general improvement in
yaw estimation with LGO histograms to the explicit invariance
they provide to positional and orientational error caused by
automatic face detection and localization. Although all three
approaches are invariant to affine lighting changes, the normal-
ized cross-correlation approach shows a significant reduction
in pitch estimation during the daytime drives. We attribute this
to the inability of this template matching approach to operate
with nonaffine lighting caused by sunlight. The SVR-based
approaches in comparison do not show a decrease in accuracy
from indoors to outdoors. We attribute this to the representation
ability of the regressors, which learn models that account for
this lighting variation. Examples of all three systems along with
the ground truth data are presented in Fig. 3, and although
the day driving experiment had better pitch accuracy than the
laboratory experiment, we attribute this in part to the Gaussian-
like distribution of head orientations in the driving experiments
compared with the uniform pitch variation in the laboratory
evaluation. As shown in Fig. 8, the pitch error is typically
smaller for the near-frontal orientations that are frequent during
driving.

Experiment 2—Anthropometric 3-D Model Evaluation: To
meet our design requirement for a monocular approach, we
generate a textured 3-D model of the head from a 2-D image.
This is accomplished by placing a generic anthropometric facial
mesh in the projected location of the detected face at a depth
that corresponds to the perspective width of the face. The
texture is assigned to the model by projecting the first image of
the tracking sequence onto this mesh. To verify that this generic
model is a sufficient approximation for tracking, we compare
it to individualized texture models that are generated using a
commercial stereo correspondence algorithm to estimate the
3-D shape of the driver’s face [46].

For this comparison, we evaluate the tracking system on
1-min excerpts from six of the drives in which we also captured
a second video stream that can provide a binocular view of the
driver. This allows us to create a stereo depth map of the driver’s
face. By sampling the map at a 10 × 10 pixel interval and
computing the Delaunay triangulation, we create a triangular
mesh that corresponds to the surface of the face.1 A global
center and orientation is assigned in the same fashion as was
done for the generic model.

In our comparison, we ignore the error generated by lost
tracks and compute the mean absolute error for all of the suc-

1Any points in the mesh that lie 20 cm beyond the median depth are
considered as outliers and are discarded.

TABLE II
COMPARISON OF MONOCULAR GENERIC 3-D MODEL TO STEREO-BASED

INDIVIDUALIZED MODELS USING MEAN ABSOLUTE ERROR

TABLE III
ISOLATED ERROR FOR STATIC HEAD POSE ESTIMATION

TABLE IV
ISOLATED ERROR OF TRACKING ALGORITHM

cessfully tracked frames, which we define as any track where
the estimate is within 30.0◦ of the true pitch, yaw, and roll. The
results of this comparison are presented in Table II. This shows
comparable tracking accuracy with either model, with the
generic model slightly outperforming the individualized models
slightly in yaw and roll estimation. As we would expect individ-
ualized methods to perform better than the generic model, we
attribute this contradictory result to occasional correspondence
errors in the stereo model that are potentially more detrimental
to the tracker than the use of a single generic facial shape. From
an implementation perspective, both fixed and dynamic models
yield comparable performance, but the fixed-model approach
has the advantage of using a single camera.

Experiment 3—Hybrid System Evaluation: In this experi-
ment, we evaluate our tracking system on the full video footage
obtained from all 14 drivers. To train the static head pose
estimator, we separately extracted a uniform sampling of the
pose space for pitch, yaw, and roll (approximately 300 images
from each 10-degree interval where available, and all of the
data from the intervals with fewer than 300 images) and used
a cross-validation scheme to train with the data from 13 of the
subjects while leaving the remainder for evaluation. This was
repeated for every all-but-one combination.

We first present the results for the head pose estimator and the
tracking algorithm independent of each other. Table III shows
the mean absolute error and the standard deviation of the error
for the static head pose estimator, and Table IV provides a
similar treatment for the tracking system. To compute these
latter statistics, the mean position and orientation are subtracted
from the ground truth and the estimated track before calculating
the mean absolute error between the two. We also exclude
frames in which the tracker has suffered catastrophic error
due to a lost track, which we again quantify as the frames
where the tracked head orientation deviates more than 30◦ from
the true pitch, yaw, or roll. Since this is the first system to
be evaluated on these data, we cannot directly compare these
results to other systems. Nevertheless, our tracking results on
these challenging data are within one or two degrees of the error
from prior systems evaluated on much simpler data sets (i.e.,

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on August 06,2010 at 21:41:45 UTC from IEEE Xplore.  Restrictions apply. 



MURPHY-CHUTORIAN AND TRIVEDI: DRIVER AWARENESS MONITORING 309

TABLE V
COMBINED ANGULAR ERROR FROM INITIALIZATION AND TRACKING

TABLE VI
COMPARISON OF STATIONARY JITTER BETWEEN STATIC POSE

ESTIMATOR AND HYBRID SYSTEM

indoors with only a few subjects) [14], [21]. It is worth noting
that these prior systems also require calibrated stereo cameras
for depth information, whereas our system uses a single camera.
From these tables, one can observe that the pose errors for the
tracking system are substantially smaller than the pose errors
for static head pose estimation procedure.

To evaluate the combined error for the full hybrid system,
we directly compare the output of the system to the motion
capture ground truth. These results are presented in Table V.
This table only contains angular evaluation, since the ground
truth is ambiguous as to the exact position of the face, which is
not the same as the position of the motion capture headpiece.
This result combines the errors of the static head pose estimator
and the tracker, and it also contains the errors from any lost
tracks. Although the mean absolute error is larger than the
static head pose estimator by itself (as should be expected), the
quality of the track is much better since the actual motion of
the head is better captured by the addition of the visual tracking
algorithm. We can quantify this in terms of the observed jitter.
We define jitter as the mean absolute change in orientation be-
tween two successive frames (i.e., the derivative of the estimate)
while the head is stationary. The ground truth is used to discover
the stationary frames, and the jitter is presented in Table VI.
The hybrid approach shows a large reduction in jitter, as it
is very good at providing a smooth and accurate track of the
head motion. This is important for applications in driver intent,
where the motion of the driver’s head provides cues to his/her
intentions (e.g., predicting when the driver is about to perform
a lane change). In Fig. 7, we plot the stationary jitter as a
function of the pose angle. These plots show that the static pose
estimator exhibits more jitter for poses that are far off-center,
whereas the hybrid system is fairly consistent across the pose
space.

To show the influence of head angle on our system, we plot-
ted the pose estimate and the standard deviation for successful
tracks as a function of the true orientations in Fig. 8. The
histograms on the top of each plot show the relative frequency
of each pose angle. For most of the pose space, the estimate
is within one standard deviation of the true pose. The static
head pose estimator exhibits a regular bias toward zero that
causes the curve to deviate from a pure linear slope, but the
error variance is relatively stable across the pose space.

To provide an example of lost tracks and reinitialization, we
include a cross-sectional plot of head yaw for a challenging
1-min video excerpt in Fig. 10. Here, the true yaw is shown

Fig. 7. Stationary jitter as a function of head position.

Fig. 8. Mean estimated head position as a function of the true angle. The error
bars indicate one standard deviation, and the histograms show the frequency of
each angle.

alongside the estimated yaw after removing any bias from the
static pose estimator. In this excerpt, there are two situations
in which the track is lost and reinitialized. Beginning from
a successful track, the system closely follows the head until
approximately 23 s. At this point, the driver makes an abrupt
turn to the left and then an abrupt turn to the right. The track is
lost at this point and then regained by reinitialization at about
28 s. A similar process occurs at 44 s. In these cases, the track
is lost at the yaw extremes. This is difficult for the tracker
since these far rotations project less of the model than frontal
views. In addition, at 48 s, the tracker fails to keep up with
the fast head movement but still maintains the track when the
movement slows down.

Images of a tracking sequence are provided in Fig. 9. We also
include example videos of the running system as supplementary
material. We encourage the readers to view these videos as they
provide better visualization of the system than is possible with
the images alone.

VII. CONCLUSION

Robust systems for observing driver behavior will play a
key role in the development of advanced driver assistance
systems. In combination with environmental sensors, cars can
be designed with the ability to supplement driver’s awareness,
preempting and preventing hazardous situations. In this paper,
we have presented new algorithms for automotive head pose
estimation and tracking, since head pose is a strong indicator
of a driver’s field of view and current focus of attention. The
system satisfies all of our design criteria as it only requires
monocular video for autonomous, real-time, identity-invariant,
and lighting-invariant driver head pose estimation. It is an
advancement in the state of the art, providing fine head pose
estimation and ease of use.

We contribute two new processes that represent advances
over previous head pose estimation approaches. Using LGO
histograms to tolerate deviations caused by scale, position, ro-
tation, and lighting, we demonstrated that they provide superior
input to SVRs for robust head pose estimation in two degrees
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Fig. 9. Example images from a daytime tracking sequence. The images have been cropped around the driver’s face to highlight the tracking estimate, which is
indicated by the overlaid 3-D axes.

Fig. 10. Cross section of yaw during a daytime tracking sequence. The
tracking bias is removed to exclude initialization error.

of freedom. The output of this static head pose estimator is
used to reinitialize our particle filter-based head tracker. This
real-time tracker updates a 3-D model of the head using a set
of appearance-based comparisons that estimate the movement
that minimizes the difference between a virtual projection of
the model and the subsequent image frame.

Further extensions to this system could focus on model
augmentation, since the initial model represents only a slice of
the head that was visible from the perspective of a single camera
when the model was created. As the head rotates, this region
shifts out of view until there is very little texture remaining to
continue the tracking. This effect is visible in Fig. 10, which
shows how the track can become less reliable as the yaw of
the head approaches 90◦ in either direction. As a possible
solution, the model can be augmented by adding additional sets
of polygons and textures. During tracking, if the rotation angle
between the sample and the initial model exceeds a threshold
and the MNCC score is sufficiently large to indicate an accurate
track, then the initialization step can be repeated to add new
polygons with a new texture to augment the original model.
Care should be taken to prevent adding polygons that can over-
lap the existing model, and during this augmentation process,
the global position and orientation do not need to be reesti-
mated, since the are already established by the particle filter.

In conclusion, the system consists of a new method for esti-
mating the pose of a human head that overcomes the difficulties
inherent with varying lighting conditions in a moving car.
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