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ABSTRACT
This paper presents a review and comparative study of re-
cent multi-view 2D and 3D approaches for human action
recognition. The approaches are reviewed and categorized
due to their nature. We report a comparison of the most
promising methods using two publicly available datasets:
the INRIA Xmas Motion Acquisition Sequences (IXMAS)
and the i3DPost Multi-View Human Action and Interaction
Dataset. Additionally, we discuss some of the shortcomings
of multi-view camera setups and outline our thoughts on
future directions of 3D human action recognition.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—performance mea-
sures

General Terms
Algorithms, performance

Keywords
Human action recognition, survey, comparative study, 3-
dimensional, view-invariance, multi-view, IXMAS, i3DPost

1. INTRODUCTION
While 2D human action recognition has received high in-

terest during the last decade, 3D human action recognition
is still a less explored field. Relatively few authors have so
far reported work on 3D human action recognition. A num-
ber of surveys has been published the last 5 years reviewing
approaches for human motion capture and action recogni-
tion in more general [21, 34, 38, 53]. This paper differs from
these, in the sense that it focus exclusively on recent multi-
view human action recognition methods, both based on 2D
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multi-view data and reconstructed 3D data. Additionally,
we present a quantitative comparison of several promising
approaches using two publicly available datasets: the INRIA
Xmas Motion Acquisition Sequences (IXMAS) Multi-View
Human Action Dataset [51] and the i3DPost Multi-View Hu-
man Action and Interaction Dataset [11].

Human actions are performed i real 3D environments,
however, traditional cameras only capture the 2D projection
of the scene. Vision-based analysis of 2D activities carried
out in the image plane will therefore only be a projection of
the actual actions. As a result, the projection of the actions
will depend on the viewpoint, and not contain full infor-
mation about the performed activities. To overcome this
shortcoming the use of 3D representations of reconstructed
3D data has been introduced through the use of two or more
cameras [1, 11, 19, 41, 51].

The use of 3D data allows for efficient analysis of 3D hu-
man activities. However, we are still faced with the problem
that the orientation of the subject in the 3D space should
be known. Therefore, approaches have been proposed with-
out this assumption by introducing view-invariant or view-
independent representations. Another strategy which has
been explored is the application of multiple views of a scene
to improve recognition by extracting features from different
2D image views or to achieve view-invariance.

The ultimate goal is to be able to perform reliable ac-
tion recognition applicable for video indexing and search,
intelligent human computer interaction, video surveillance,
movies, health care, driver assistance, automatic activity
analysis and behavior understanding. We contribute to this
field by providing a review and comparative study of recent
research on 2D and 3D human action recognition for multi-
view camera systems (see Table 1), to give people interested
in the field an easy overview of the proposed approaches, and
an idea of the performance and direction of the research.

2. 2D APPROACHES
One line of work concentrates solely on the 2D image data

acquired by multiple cameras. Action recognition can range
from pointing gesture to complex multi-signal actions, e.g.,
including both coarse level of body movement and fine level
of hand gesture. Matikainen et al. [32] proposed a method
for multi-user, prop-free pointing detection using two cam-
era views. Motion is analyzed and used to refer the candi-
dates of pointing rotation centers and then estimate the 2D
pointer configurations in each image. Based on the extrin-
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Figure 1: Prominent 3D human body model and human motion representations [6, 15, 33, 44, 51].

sic camera parameters, these 2D pointer configurations are
merged across views to obtain 3D pointing vectors.

In the work of Souvenir et al. [43], the acquired data from
5 calibrated and synchronized cameras, is further projected
to 64 evenly spaced virtual cameras used for training. Ac-
tions are described in a view-invariant manner by computing
R transform surfaces of silhouettes and manifold learning.
Gkalelis et al. [12] exploits the circular shift invariance prop-
erty of the Discrete Fourier Transform (DFT) magnitudes,
and use Fuzzy Vector Quantization (FVQ) and Linear Dis-
criminant Analysis (LDA) to represent and classify actions.
A similar approach was proposed by Iosifidis et al. [20].

Some authors perform action recognition from image se-
quences in different viewing angles. Ahmad et al. [2] apply
Principal Component Analysis (PCA) of optical flow veloc-
ity and human body shape information, and then represent
each action using a set of multi-dimensional discrete Hid-
den Markov Models (HMM) for each action and viewpoint.
Cherla et al. [7] show how view-invariant recognition can be
performed by using data fusion of two orthogonal views. An
action basis is built using eigenanalysis of walking sequences
of different people, and projections of the width profile of
the actor and spatio-temporal features are applied. Finally,
Dynamic Time Warping (DTW) is used for recognition. A
number of other techniques have been employed, like met-
ric learning [46] or representing action by feature-trees [39]
or ballistic dynamics [49]. In [50] Weinland et al. propose
an approach which is robust to occlusions and viewpoint
changes using local partitioning and hierarchical classifica-
tion of 3D Histogram of Oriented Gradients volumes.

Others use synthetic data rendered from a wide range of
viewpoints to train their model and then classify actions in
a single view, e.g. Lv et al. [31], where shape context is
applied to represent key poses from silhouettes and Viterbi
Path Searching for classification. A similar approach was
proposed by Fihl. et al. [10] for gait analysis.

Another topic which has been explored by several au-

thors the last couple of years is cross-view action recogni-
tion. This is a difficult task of recognizing actions by train-
ing on one view and testing on another completely different
view (e.g., the side view versus the top view of a person
in IXMAS). A number of techniques have been proposed,
stretching from applying multiple features [28], information
maximization [29], dynamic scene geometry [14], self simi-
larities [23, 24] and transfer learning [9, 30]. For additional
related work on view-invariant methods please refer to [21].

3. 3D APPROACHES
Another line of work utilize the full reconstructed 3D

data for feature extraction and description. Figure 1 shows
some examples of the more prominent model and non-model-
based representations of the human body and its motion.

Johnson and Hebert proposed the spin image [22], and
Osada et al. the shape distribution [35]. Ankerst et al.
introduced the shape histogram [3], which is a similar to
the 3D extended shape context [4] presented by Körtgen et
al. [27], and Kazhdan et al. applied spherical harmonics
to represent the shape histogram in a view-invariant man-
ner [25]. Later Huang et al. extended the shape histogram
with color information [17]. Recently, Huang et al. made
a comparison of these shape descriptors combined with self
similarities, with the shape histogram (3D shape context) as
the top performing descriptor [18].

A common characteristic of all these approaches is that
they are solely based on static features, like shape and pose
description, while the most popular and best performing 2D
image descriptors apply motion information or a combina-
tion of the two [34, 53]. Some authors add temporal informa-
tion by capturing the evolvement of static descriptors over
time, i.e., shape and pose changes [5, 8, 16, 26, 37, 51, 52,
54]. The common trends are to accumulate static descrip-
tors over time, track human shape or pose information, or
apply sliding windows to capture the temporal contents [34,
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Table 1: Publications on multi-view human action recognition.
Year First author Dim Feature/Representation Classifier/Matching

2005 K. Huang [16] 3D 3D shape context, tracking Hidden Markov model
2006 Ahmad [2] 2D Optical flow, PCA, Human body shape Hidden Markov model
2006 Canton-Ferrer [5] 3D 3D Motion descriptors and invariant moments Bayesian classifier
2006 Pierobon [37] 3D Cylindrical shape descriptor DTW, template matching
2006 Weinland [51] 3D Motion history Volumes (MHV), FFT LDA, Mahalanobis distance
2007 Lv [31] 2D Shape context, graph model: Action Net Viterbi algorithm
2007 Weinland [52] 2D Exemplars of silhouettes projections Hidden Markov model, 3D learning
2008 Cherla [7] 2D Width profile, Spatio-temporal features DTW, average template matching
2008 Farhadi [9] 2D Histogram of silhouette and optic flow A transferable activity model
2008 Junejo [23] 2D Bag of local self-similarity matrices Support vector machines
2008 Liu [28] 2D Local spatio-temporal volumes, spin-images Fiedler Embedding
2008 Liu [29] 2D Bag of local Cuboid features Support vector machines
2008 Souvenir [43] 2D R transform surfaces, manifold learning 2D diffusion distance metric
2008 D. Tran [46] 2D Motion context Nearest neighbor and rejection
2008 Turaga [47] 3D MHV, Stiefel and Grassmann manifolds Procrustes distance metric
2008 Vitaladevuni [49] 2D Motion history images, ballistic dynamics Bayesian model
2008 Yan [54] 3D 4D action feature model Maximum likelihood function
2009 Gkalelis [12] 2D Multi-view posture masks, DFT, FVT LDA, Mahalanobis distance
2009 Kilner [26] 3D Shape similarity Markov model
2009 Reddy [39] 2D Feature-tree of Cuboids Local voting strategy
2009 Veeraraghavan [48] 3D Circular FFT features DTW, Bayesian model
2010 P. Huang [18] 3D Shape histogram, shape-flow descriptor Similarity matrix
2010 Iosifidis [20] 2D Multi-view binary masks, FVT LDA, Euclidean/Mahalanobis dist.
2010 Weinland [50] 2D 3D Histogram of Oriented Gradients Hierarchical classification
2011 Haq [14] 2D Dynamic scene geometry Multi-body fundamental matrix
2011 Holte [15] 3D 3D optical flow, Harmonic motion context Normalized correlation
2011 Junejo [24] 2D Bag of temporal self-similarities DTW, Support vector machines
2011 Liu [30] 2D Bag of Cuboids features Knowledge transfer, graph matching
2011 Pehlivan [36] 3D Circular body layer features Nearest neighbor
2011 Song [42] 3D 3D body pose and HOG hand features Hidden conditional random fields

37, 51, 53]. Cohen et al. [8] use 3D human body shapes and
Support Vector Machines (SVM) for view-invariant identifi-
cation of human body postures. They apply a cylindrical
histogram and compute an invariant measure of the dis-
tribution of reconstructed voxels, which later was used by
Pierobon et al. [37] for human action recognition. Another
example is seen in the work of Huang and Trivedi [16], where
a 3D cylindrical shape context is presented to capture the
human body configuration for gesture analysis of volumet-
ric data. The temporal information of an action is mod-
eled using HMM. However, this study does not address the
view-independence aspect. Instead, the subjects are asked
to rotate while training the system.

More detailed 3D pose information (i.e. from tracking the
kinematics model of the human body) is a rich and view-
invariant representation for action recognition but challeng-
ing to derive [38]. Human body pose tracking is itself an
important area with many related research studies. Among
these, research started with monocular view and 2D fea-
tures, and more recently (about 10 years ago) multi-view
and 3D features like volumetric data have been applied for
body pose estimation and tracking [45]. One of the earliest
methods for multi-view 3D human pose tracking using vol-
ume data was proposed by Mikic et al. [33], in which they
use a hierarchical procedure starting by locating the head
using its specific shape and size, and then growing to other
body parts. Though this method showed good visual results
for several complex motion sequences, it is also quite com-
putationally expensive. Cheng and Trivedi [6] proposed a

method that incorporates the kinematics constraints of a hu-
man body model into a Gaussian Mixture Model framework,
which was applied to track both body and hand models
from volume data. Although this method was highly rated
with good body tracking accuracy on HumanEva dataset
[41], it requires a manual initialization and could not run
in real-time. We see that there are always trade-offs be-
tween achieving detailed information of human body pose
and the computational cost as well as the robustness. In
[42], Song et al. focus on gestures with more limited body
movements. Therefore they only use the depth information
from two camera views to track 3D upper body poses using
a Bayesian inference framework with a particle filter, as well
as classifying several hand poses based on their appearance.
The temporal information of both upper body and hand
pose are then inputted into a Hidden Conditional Random
Field (HCRF) framework for aircraft handling gesture recog-
nition. To deal with the long range temporal dependencies
in some gestures, they also incorporate a Gaussian temporal
smoothing kernel into the HCRF inference framework.

The Motion History Volume (MVH) was proposed by Wein-
land et al. [51], as a 3D extension of Motion History Images
(MHIs). MHVs are created by accumulating static human
postures over time in a cylindrical representation, which is
made view-invariant with respect to the vertical axis by
applying the Fourier transform in cylindrical coordinates.
The same representation was used by Turaga et al. [47]
in combination with a more sophisticated action learning
and classification based on Stiefel and Grassmann manifolds.
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Veeraraghavan et al. [48] employed a rate invariant model
to build time series of the circular FFT features described
in [51], accounting for the temporal rate changes in the exe-
cutions of an action. Later, Weinland et al. [52] proposed a
framework, where actions are modeled using 3D occupancy
grids, built from multiple viewpoints, in an exemplar-based
Hidden Markov Models (HMM). Learned 3D exemplars are
used to produce 2D image information which is compared to
the observations, hence, 3D reconstruction is not required
during the recognition phase.

Pehlivan et al. [36] presented a view-independent repre-
sentation based on human poses. The volume of the human
body is first divided into a sequence of horizontal layers,
and then the intersections of the body segments with each
layer are coded with enclosing circles. The circular features
in all layers are then used to generate a pose descriptor.
The pose descriptors of all frames in an action sequence are
further combined to generate corresponding motion descrip-
tors. Action recognition is then performed with a simple
nearest neighbor classifier. Canton-Ferrer et al. [5] propose
another view-invariant representation based on 3D MHIs
and 3D invariant statistical moments. Recently, Huang et
al. proposed 3D shape matching in temporal sequences by
time filtering and shape flows [18]. Kilner et al. [26] ap-
plied the shape histogram and evaluated similarity mea-
sures for action matching and key-pose detection in sports
events, using 3D data available in the multi-camera broad-
cast environment. A different strategy is presented by Yan et
al. [54]. They propose a 4D action feature model (4D-AFM)
for recognizing actions from arbitrary views based on spatio-
temporal features of spatio-temporal volumes (STVs). The
extracted features are mapped from the STVs to a sequence
of reconstructed 3D visual hulls over time.

A 3D descriptors which are directly based on rich de-
tailed motion information are the 3D Motion Context (3D-
MC) [15] and the Harmonic Motion Context (HMC) [15]
proposed by Holte et al. The 3D-MC descriptor is a mo-
tion oriented 3D version of the shape context [4, 27], which
incorporates motion information implicitly by representing
estimated 3D optical flow by embedded Histograms of 3D
Optical Flow (3D-HOF) in a spherical histogram. The HMC
descriptor is an extended version of the 3D-MC descriptor
that makes it view-invariant by decomposing the represen-
tation into a set of spherical harmonic basis functions.

4. MULTI-VIEW DATASETS
A number of multi-view human action datasets are pub-

licly available. A frequently used dataset is the INRIA Xmas
Motion Acquisition Sequences (IXMAS) Multi-View Human
Action Dataset1 [51]. It consists of 12 non-professional ac-
tors performing 13 daily-life actions 3 times: check watch,
cross arms, scratch head, sit down, get up, turn around, walk,
wave, punch, kick, point, pick up and throw. The dataset has
been recorded by 5 calibrated and synchronized cameras,
where the actors chose freely position and orientation, and
consists of image sequences (390 × 291) and reconstructed
3D volumes (64×64×64 voxels), resulting in a total of 2340
action instances for all 5 cameras.

Recently, a new high quality dataset has been produced,
the i3DPost Multi-View Human Action and Interaction Da-

1The IXMAS dataset is available at http://4drepository.
inrialpes.fr/public/viewgroup/6

taset2 [11]. This dataset consists of 8 actors performing
10 different actions, where 6 are single actions: walk, run,
jump, bend, hand-wave and jump-in-place, and 4 are com-
bined actions: sit-stand-up, run-fall, walk-sit and run-jump-
walk. Additionally, the dataset also contains 2 interactions:
handshake amd pull, and 6 basic facial expressions. The
subjects have different body sizes, clothing and are of dif-
ferent sex and nationalities. The multi-view videos have
been recorded by a 8 calibrated and synchronized camera
setup in high definition resolution (1920 × 1080), resulting
in a total of 640 videos (excluding videos of interactions
and facial expressions). For each video frame a 3D mesh
model of relatively high detail level (20, 000-40, 000 vertices
and 40, 000-80, 000 triangles) of the actor and the associated
camera calibration parameters are available.

Another interesting multi-view dataset is the Synchro-
nized Video and Motion Capture Dataset for Evaluation
of Articulated Human Motion (HumanEva) [41], contain-
ing 6 simple actions performed by 4 actors, captured by 7
calibrated video cameras (4 grayscale and 3 color), which
have been synchronized with 3D body poses obtained from
a motion capture system. Among other less frequently used
multi-view datasets are the CMU Motion of Body (MoBo)
Database [13], the Multi-camera Human Action Video Data-
set (MuHAVi) [1] and the KU Gesture Dataset [19].

5. COMPARISON
In this section we report a quantitative comparison of the

reviewed approaches using two publicly available datasets.
In Table 2 the recognition accuracies of several 2D and 3D
approaches evaluated on IXMAS are listed. It is interesting
to note that all the 3D approaches except one are the top
performing methods. This indicates that the use of the full
reconstructed 3D information is superior to applying 2D im-
age data from multiple views, when it comes to recognition
accuracy. However, the computational cost of working in
3D is usually also more expensive. Hence, with respect to
the application and demand for real-time performance, 2D
approaches might still be best choice. It should be noted
that some results are reported using cross-view evaluation,
which is more challenging than applying data from multi-
ple and identical viewpoints, however, still some of these
methods perform very well. When both types of results are
available in the original work, we have reported the results
for all views, since these are more comparable to the 3D
Results, where all views are used to reconstruct 3D data.

Table 3 shows the recognition accuracies of a few other
approaches evaluated on the i3DPost dataset. The evalua-
tion has been carried out for 8 actions by combining the 6
single actions in the dataset with two additional single ac-
tions: sit down and fall by splitting 2 of the 4 combined
actions. Again the approach based on full 3D information
outperforms the 2D methods.

6. DISCUSSION
Although the reviewed approaches show promising results

for multi-view human action recognition, 3D reconstructed
data from multi-view camera systems has some shortcom-
ings. First of all, the quality of the silhouettes is crucial
for the outcome of applying Shape-from-Silhouettes. Hence,

2The i3DPost dataset is available at http://kahlan.eps.
surrey.ac.uk/i3dpost action/data
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Table 2: Recognition accuracies (%) for the IXMAS dataset. The column named “Dim” states if the methods
apply 2D image data or 3D data, the other columns states how many actions are used for evaluatiom, and if
the results are based on all views or cross-view recognition.

Year Method Dim 11 actions 13 actions All views Cross-view

2008 Turaga et al. [47] 3D 98.78 - x
2008 Veeraraghavan et al. [48] 3D 98.18 - x
2006 Weinland et al. [51] 3D 93.33 - x
2011 Pehlivan et al. [36] 3D 90.91 88.63 x
2008 Vitaladevuni et al. [49] 2D 87.00 - x
2011 Haq et al. [14] 2D 83.69 - x
2010 Weinland et al. [50] 2D 83.50 - x
2008 Liu et al. [29] 2D - 82.80 x
2011 Liu et al. [30] 2D 82.80 - x
2007 Weinland et al. [52] 2D 81.27 - x
2007 Lv et al. [31] 2D - 80.60 x
2008 Tran et al. [46] 2D - 80.22 x
2008 Cherla et al. [7] 2D - 80.05 x
2008 Liu et al. [28] 2D - 78.50 x
2008 Yan et al. [54] 3D 78.00 - x
2011 Junejo et al. [24] 2D 74.60 - x
2008 Junejo et al. [23] 2D 72.70 - x
2009 Reddy et al. [39] 2D - 72.60 x
2008 Farhadi et al. [9] 2D 58.10 - x

Table 3: Recognition accuracies (%) for the i3DPost
dataset. *Gkalelis et al. [12] test on 5 single actions.

Year Method Dim 8 actions

2011 Holte et al. [15] 3D 92.19
2010 Iosifidis et al. [20] 2D 90.88
2009 Gkalelis et al. [12] 2D 90.00*

shadows, holes and other errors due to inaccurate foreground
segmentation will affect the final quality of the reconstructed
3D data. Secondly, the number of views and the image reso-
lution will influent the level of details which can be achieved,
and self-occlusion is a known problem when reconstructing
3D data from multi-view image data, resulting in merging
body parts. Finally, 3D data can only be reconstructed in a
limited space where multiple camera views overlap.

In recent years other prominent vision-based sensors for
acquiring 3D data have been developed. Time-of-Flight
(ToF) range cameras, which are single sensors capable of
measuring depth information, have become popular in the
computer vision community. Especially, with the introduc-
tion of the Kinect sensor [40], these single and direct 3D
imaging devices have become widespread and commercial
available at low cost. Hence, the future of acquiring vision-
based 3D data will move in this direction, and in the next
years we will see many new proposed approaches for human
action recognition and other computer vision related topics.
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