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Abstract—In this paper, we introduce a novel stereo-monocular
fusion approach to on-road localization and tracking of vehicles.
Utilizing a calibrated stereo-vision rig, the proposed approach
combines monocular detection with stereo-vision for on-road
vehicle localization and tracking for driver assistance. The
system initially acquires synchronized monocular frames and
calculates depth maps from the stereo rig. The system then
detects vehicles in the image plane using an active learning-based
monocular vision approach. Using the image coordinates of
detected vehicles, the system then localizes the vehicles in
real-world coordinates using the calculated depth map. The
vehicles are tracked both in the image plane, and in real-world
coordinates, fusing information from both the monocular
and stereo modalities. Vehicles’ states are estimated and
tracked using Kalman filtering. Quantitative analysis of tracks
is provided. The full system takes 46ms to process a single frame.

Index Terms - Active Safety, Driver Assistance, Real-time
Vision, Multi-sensor Fusion, Machine Learning.

I. INTRODUCTION

The World Health Organization estimates that 1.2 million

people are killed worldwide in road crashes each year, and a

further 50 million are injured. The total economic cost asso-

ciated with traffic accidents is estimated at a staggering $518

billion US per year. Stemming the tide requires significant

actions by policy makers, auto manufacturers, and researchers

[32].

In recent years, there has been an active research community

devoted to developing the next generation of driver assistance

systems. These include research associated with lane tracking

[17], [23], [24], pedestrian detection [9], bicyclist detection

[6], vehicle detection [28], and driver monitoring [8], [18].

Robust detection and tracking of other vehicles on the road

using vision is a challenging problem. Roads are dynamic

environments, with ever-changing backgrounds and illumina-

tions. The ego vehicle and the other vehicles on the road are

generally in motion, so the sizes and locations of vehicles in

the image plane are diverse. Vehicles encountered vary widely

in terms of their shapes, relative sizes, colors, and appearances

[26].

Recent studies in on-road vehicle detection and tracking

mainly focused on stereo based techniques [19], [4], and

monocular techniques [13], [27], [22]. Stereo-based techniques

have often used tracking of point clouds in 3D space to

segment, detect, and track vehicles [4], [19]. Monocular ap-

proaches, by contrast, have generally utilized trained classifiers

for vehicle detection and tracking in the image plane [13], [27],

[22].

Stereo techniques feature the advantage of explicit com-

putation of depth and location in real-world coordinates, but

Fig. 1. Overview of the approach detailed in this paper. On-road video
frames are grabbed using a calibrated stereo rig. A vehicle detector is applied
to the monocular frame. Detected vehicles are then located in the depth map,
and 3D coordinates are determined for each vehicle. Vehicles are tracked in
both the image plane and real-world coordinates using Kalman filtering. The
vehicles’ colors are determined by their longitudinal distance, with respect
to the ego vehicle. Tracked vehicles are displayed using a color gradient to
indicated longitudinal distance, ranging between red for close vehicles, and
blue for far away vehicles.

require additional specialized hardware, precise calibration,

and additional computational cost. Monocular techniques have

featured advantages of lower cost at runtime and established

machine learning paradigms, but they do not immediately

provide a 3D location for detected vehicles. While many

prior studies have pursued a purely monocular approach, or

a purely stereo-vision approach, few studies have tried to fuse

information from both domains.

In this study, we introduce a novel approach to on-road

vehicle localization and tracking using a combination of stereo

and monocular vision. Using a calibrated stereo rig, on-

road frames are grabbed and the depth map is computed. A

monocular vehicle detector, based on prior work in [22] is

applied to the monocular frame. Detected vehicles are then

localized in 3D space by accessing the pre-computed depth

map. The approach introduced in this paper fuses information

from the monocular and stereo domains, treating them as

complimentary modalities. The vehicles are tracked in both

the image plane and in real-world coordinates. The tracked

vehicles’ states are estimated by means of Kalman filtering.

The full system processes a given frame in 46ms.

The remainder of this paper is structured as follows. The

following section details recent works related to on-road

vehicle detection and tracking. Section 3 details the stereo-

monocular fusion approach for on-road vehicle detection and
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tracking. Section 4 provides experimental results. Section 5

provides concluding remarks.

II. RELATED RESEARCH

In recent years, vehicle detection and tracking have been

widely explored in the literature. The research community

is well-represented in both stereo-vision and monocular ap-

proaches to vehicle detection.

A. Vehicle Detection and Tracking Using Stereo-Vision

Stereo-vision provides depth and relevant 3D information.

As such, many stereo-vision works detect and track vehicles

using geometric models, segmentation methods, and temporal

filtering.

In [3], after calculating depth and optical flow, clustering is

used to separate static from moving objects. Then, a modified

Iterative Closest Point algorithm, using polar distance metric

is used to fit a cuboid to the estimated vehicle. The system

uses this methodology for estimating vehicle pose, and does

not require temporal filtering.

In [4], the problem of tracking oncoming vehicles is ad-

dressed. In particular, as dangerous situations can arise when

the oncoming vehicle turns, the paper addresses distinguish-

ing between oncoming and turning vehicles. The proposed

approach uses Interacting Multiple Models to address both

the oncoming and turning modes. The respective motion

models are estimated using temporal filtering. Comparison

between the proposed IMM approach and standard single-

mode tracking is provided.

In the recent work of [19], 3D position, velocity, and

orientation information are provided by the fusion of depth

maps with optical flow. The proposed methodology is shown

to apply to detection and tracking of vehicles, pedestrians.

The methodology provides a general approach to separating

moving objects from static objects using stereo-vision.

In [14], vehicle detection and tracking are achieved by

means of depth calculation and a two-stage mean-shift al-

gorithm. The trajectories of objects are predicted using the

object’s history, relying on learned object trajectories using

particle motion pattern.

B. Vehicle Detection and Tracking Using Monocular Vision

Many monocular approaches to vehicle detection are based

in machine learning and pattern recognition. While most

monocular approaches to vehicle detection have used discrim-

inative classifiers, generative models have been used. In [5], a

statistical model based on vertical and horizontal edge features

was used for vehicle detection. The detected vehicles are then

tracked using particle filtering.

Discriminative classifiers have been more common for ve-

hicle detection in the literature. In [20], vehicle are detected

using Haar-like rectangular features, and a cascade classifier

using Adaboost, as was introduced in [31] for face detection.

A similar formulation in used in [13], with enhanced feature

sets. In [7], a vehicle detector using Haar-like features and

Adaboost classification is also used. The detected vehicles

are then tracked using a modified version of Lucas-Kanade

tracking.

In [27], a deformable parts-based model is utilized for

vehicle detection. Histogram of oriented gradient features are

extracted at multiple scales, for the root vehicle, and parts such

as tires. The Latent Support Vector Machine classifier is used

for training the detector, based on the object detection work of

[12]. The vehicles and parts are tracked using particle filtering.

C. Fusing Monocular and Stereo-vision

In [28], stereo and monocular vision were combined to

detect and track the preceding vehicle in the ego lane. Stereo-

vision based scene segmentation was used to identify vertical

edges in 3D space. Then, monocular vision is used for de-

tecting the preceding vehicle, using symmetry operators and

imposing bounding box aspect ratio constraints. Tracking is

achieved using the cross-correlation of vehicles across frames.

In [9], a combination of stereo and monocular cues are

used for pedestrian detection. Histogram of Oriented Gradients

extraction is performed in the monocular image plane, the

optical flow motion image, and the depth image, and SVM

classification is used. In particular, this approach was shown

to be robust to occlusions, which are common in urban scenes.

The approach presented in this paper differs from that in

[9] in the nature of the stereo-monocular fusion. In this study,

vehicles are detected using the monocular modality, and then

tracked in both the image plane and 3D coordinates.

III. ON-ROAD VEHICLE DETECTION AND 3D TRACKING

USING STEREO-MONOCULAR FUSION

A. Experimental Testbed and Data Acquisition

For this paper, data has been captured using a calibrated

stereo rig, mounted on a vehicle platform, looking forward.

Stereo matching is implemented using standard techniques,

using commercially-available hardware made by Tyzx [30],

[29]. A similar stereo setup has been used in [19]. Video is

captured at an image resolution of 500×312. The implemented

system operates on the left monocular image from the stereo

rig, as well as the depth image that results from stereo

matching.

B. Active Learning-Based Monocular Vehicle Detection

For detecting vehicles, we utilize monocular image data

from the left camera of the stereo rig. We apply a monocular

vehicle detector, trained using an active learning framework.

This vehicle detector was part of the overall vehicle tracking

system reported in [22].

Active learning for object detection has gained in popularity

[10],[22], mainly for its ability to improve classifier perfor-

mance by reducing false alarms [22], to increase a classifier’s

recall [21], to semi-automatically generate more training data

[10]. A comparative survey of active learning for vehicle

detection can be found in [25].

In general, batch active learning for object detection consists

of two main stages: an initialization stage, and a stage of

query and retraining [16]. Firstly, an initial classifier is trained
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using conventional supervised learning of a positive target

class, and a negative class. Then, the initial classifier is used

in conjunction with unlabeled data to update and improve

classification performance. This process will generally add

cost in terms of data and human labeling effort.

The vehicle detector in [22] was initialized using a labeled

corpus of training examples. The resulting classifier was

evaluated on independent, unlabeled on-road video data. A

researcher used an interface for quick and efficient query and

archival of informative independent training examples from

the unlabeled data, with the learning methodology seeking

inclusion of missed vehicle detections and false positives.

After the second batch of learning, the resulting detector

showed significant improvements in recall and precision. [22]

For the task of identifying vehicles, a boosted cascade

of simple Haar-like rectangular features has been used, as

was introduced by Viola and Jones [31] in the context of

face detection. Various studies have incorporated this feature

and classifier pairing for on-road vehicle detection systems

[13],[20]. The set of Haar-like features is sensitive to edges,

bars, vertical and horizontal details, and symmetric structures

[31]. The resulting extracted values are then classified by

Adaboost [11]. Modern implementations of the algorithm run

at real-time speeds.

vk =
[

ik jk wk hk

]T
(1)

Evaluating the vehicle detector on a given frame returns

a list of bounding boxes. We denote one bounding box

corresponding to a given detected vehicle as vk, where k is a

time-index. Bounding box vk is parametrized by its i−j pixel

coordinate, and the width and height of the box, as given in

equation 1.

C. Estimating 3D Coordinates Using Stereo-Vision

The calibrated stereo rig is aligned such that the depth

image and the left image share the same coordinate system.

This allows us to use detections from the monocular vehicle

detector to estimate the distance to a given vehicle. Inferring

depth from the stereo image is not entirely straight-forward, as

the main error in stereo measurements is the depth component

[2].

Figure 2(a)-2(c) demonstrate this difficulty. Figure 2(a)

shows the raw video frame. Figure 2(b) shows monocular

detection results on the frame. Figure 2(c) shows the depth

image for this frame. We note that there are outliers and noise

throughout the depth image. While one would expect that the

rear face of a vehicle would have roughly constant longitudinal

distance from the ego-vehicle, it’s evident from the closest

vehicle, shown in bright green in 2(c), that the raw stereo

measurements do not deliver this.

There is a rich literature on improving stereo depth mea-

surements. Major contributions have explored improved stereo

matching algorithms [15], and the use of temporal filtering and

smoothing of the depth map [2]. In this study, we calculate the

depth measurement by spatial smoothing. For a given detected

(a) Raw Left Video (b) Detected Vehicles

(c) Depth Image

Fig. 2. Noisy depth measurements in stereo-vision. a) Raw left monocular
frame. b) Detected vehicles using monocular vehicle detection. c) Depth Image

vehicle vk, we take the sample mean depth of a given bounding

box from the depth image. Equation 2 shows this calculation,

where Zk is the depth measurement, and D is the depth image.

Zk = median (D(i, j)), ∀ i, j ∈ vk (2)

Taking the median over the bounding box vk improves the

depth measurement for detected vehicles [9], but does not

require us to smooth depth calculations over the entire image.

We then proceed to calculate Xk, and Yk, the lateral and

vertical positions of the vehicle respectively. We use the

following equations, using the i − j pixel coordinates of a

given detected vehicle’s bounding box, vk. We first find the

centroid of the rectangle, vk, and then apply equation 3 to

solve for Xk, and Yk. The variables ci and cj are the center

pixel coordinates in the i and j directions, respectively. Λx

and Λy are scaling constants, intrinsic to the camera.

Xk = (ik +
1

2
wk − ci)ΛxZk

Yk = (jk +
1

2
hk − cj)ΛyZk

(3)

The complete measurement for a given detected vehicle, for

a given time instant k is then obtained by concatenating the

monocular bounding box vk and the vehicle’s full 3D position,

as solved in equations 2 and 3 [30].

D. Tracking Vehicle State Using Kalman Filtering

While prior works have tracked vehicles in 3D world
coordinates [4] or image coordinates [5], in this study, we
track each vehicle across both the image plane and the 3D
world. Each vehicle is tracked using a single Kalman filter.
The measurement is a combination of their detected bounding
boxes, as parametrized by vk and the full 3D coordinates
Xk, Yk, Zk.

Vk =
[

ik jk wk hk Xk Yk Zk ∆Xk ∆Yk ∆Zk

]T

(4)

The full state vector also includes the differences in 3D. The

full state-space system is given in equation 5, where ηk and
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ξk are the plant and observation noise, respectively. Vk is the

full state of the tracked vehicle, and Mk is the measurement

taken each frame, as detailed in equations 1- 4.

Vk+1 = AVk + ηk

Mk = CVk + ξk (5)

The variables ηk and ξk are the plant and observation noise,

respectively. The state transition matrix A and the observation

matrix C are given below.

A =

























1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 ∆t 0 0

0 0 0 0 0 1 0 0 ∆t 0

0 0 0 0 0 0 1 0 0 ∆t
0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

























C =















1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0















(6)

The tracking formulation presented estimates the vehicle’s

state in both image and 3D coordinates. This tracking for-

mulation incorporates the measurements from both sources of

information for the system. Tracking in the image plane alone

would ignore 3D measurements coming from stereo-vision.

Tracking purely in 3D coordinates would belie the fact that

our initial measurements come from the image plane. Given

that our depth measurements are dependent on the estimated

bounding box vk and equation 2, it works to the system’s

advantage to track the state of the vehicle in both modalities.

IV. EXPERIMENTAL EVALUATION

The presented system has been evaluated on real-world

on-road data, captured using the calibrated vehicle-mounted

stereo-rig. For a given stereo pair frame, stereo matching is

performed and the depth map is generated. Then, the vehicle

detector is evaluated over the left camera’s frame. We use

equations 1-3, to solve for a given vehicles’ bounding box in

image coordinates, and the vehicle’s full 3D position. These

seven parameters comprise the measurement vector for a given

vehicle in a given frame. We then use equations 4-5 to estimate

the full state of the vehicle using Kalman filtering.

We quantify the performance of the system on a highway

sequence consisting of 1500 frames, captured at 25 frames per

second. The sequence contains 5457 vehicles to be detected.

Figure IV plots the true positive rate vs. false positives per

frame, comparing the system to that presented in [22]. We note

that tracking in both the stereo and monocular domain yields

improvement in performance. This is because the tracker

searches for samples in both the stereo and monocular domain;

if a track is dropped in the image plane due to missed

detection, the search in the stereo domain will maintain this

track.
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Fig. 3. True positive rate vs. false positives per frame, stereo-monocular
tracker compared with the system from [22]

In addition to sample per-frame outputs, we provide the

trajectories of three vehicles that were tracked.

Figure 4(a) plots the Xk and Zk of a given vehicle,

respectively, over the course of 120 frames. In this case, the

indexing variable k corresponds to the frame number over

which we track the vehicle. This is a vehicle that quickly

overtook the ego vehicle. Figures 4(b)-4(d) show the vehicle’s

progression while it was in the system’s tracking range. In

figure 4(b), the tracked vehicle is the closest vehicle in the

left lane, colored red. In figure 4(c) the tracked vehicle is still

in the left lane, and is colored purple. At this point, it’s midway

through its trajectory, and Zk is roughly 25 meters. In figure

4(d), the vehicle as at the end of its trajectory, about 40 meters

away, and colored blue.

Figure 5(a) plots the trajectory of a tracked vehicle in the

right lane over a period of 550 frames. The vehicle remained

in the system’s field of view for quite a while. Initially, the

ego vehicle approached it from behind, at which point the two

vehicles maintained relatively close relative distance. Figure

5(b) shows the vehicle early in its trajectory, far from the

ego vehicle. It is located in the right lane, and is colored

blue. Figure 5(c) shows the vehicle roughly a third through

its trajectory, in the right lane, colored red. Figure 5(d) shows

the vehicle towards the end of the plotted trajectory.

The fully implemented system processes a single frame in

46ms. This time includes stereo matching, vehicle detection,

3D localization, and Kalman tracking of multiple vehicles.

The system has been implemented using an Intel Core Duo

2.4GHz architecture. As noted earlier, the longitudinal range

is roughly 40m.
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Fig. 4. a) Sample tracked vehicle trajectory over time. The vehicle entered
left of the ego lane and overtook the ego vehicle with high relative velocity.
b) Snapshots of vehicle trajectory plotted in Figure 4(a). 4(b) The tracked
vehicle is the closest vehicle in the left lane, colored red. 4(c) The tracked
vehicle is still in the left lane, and is colored purple. 4(d) The vehicle as at
the end of its trajectory, and colored blue.
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Fig. 5. a) Sample tracked vehicle trajectory over time. The ego vehicle
caught up to this vehicle, which was in the right lane. The vehicle and the
ego-vehicle maintained small relative speed for a while. b) Snapshots of the
tracked vehicle, whose trajectory is plotted in 5(a). 5(b) The tracked vehicle
far from the ego vehicle, in the right lane, colored blue. 5(c) The tracked
vehicle roughly a third through its trajectory, in the right lane, colored red.
5(d) Tracked vehicle in the right lane, colored red.
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V. CONCLUSION AND FUTURE WORKS

In this paper, we have introduced a novel approach to

vehicle localization and tracking, combining stereo-vision cues

with monocular vehicle detection. The contribution of this

work entails fusing information from the monocular modality

for vehicle detection with information from stereo-vision for

3D localization, and tracking the tandem measurements as a

single state. Vehicles are initially detected in the monocular

frame using a robust vehicle detector that was trained using

active learning[22]. Using the detection results, the vehicle’s

3D location is solved using stereo-vision. The full vehicle state

is tracked both in the image plane, and in 3D coordinates

using Kalman filtering. The fully deployed system processes

a single frame in 46ms, including stereo matching, vehicle

detection, vehicle localization, and tracking. Future areas of

research include learning and modeling of vehicle trajectories,

and fusion with other modalities.
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