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Abstract— Lane analysis involves data-intensive processing of
input video frames to extract lanes that form a small percentage
of the entire input image data. In this paper, we propose lane
analysis using selective regions (LASeR), that takes advantage
of the saliency of the lane features to estimate and track lanes
in a road scene captured by on-board camera. The proposed
technique processes selected bands in the image instead of the
entire region of interest to extract sufficient lane features for
efficient lane estimation. A detailed performance evaluation of
the proposed approach is presented, which shows that such
selective processing is sufficient to perform lane analysis with
a high degree of accuracy.

I. INTRODUCTION

Lane estimation and tracking is considered to be one of the
most vital component of all intelligent driver safety systems
(IDSS) owing to the role lanes play in understanding the
environment outside the vehicle [1]. There are a number of
vision-based lane analysis methods reported in literature as
shown in recent works like [2], [3], [4], [5], [6], [7], [8],
[9] etc., which usually involve lane feature extraction, outlier
removal and tracking using Kalman/particle filters. A variety
of techniques like using steerable filters [2], learning based
approaches [6], color information [5] etc. are used to extract
lane features by processing the input image frames. The
lane features thus obtained are further analyzed using outlier
removal techniques and tracking to improve the accuracy
and robustness of the lane analysis process. Fig. 1 shows
the typical lane analysis approach. It is noteworthy that lane
features form less than 5% of the entire image but most
existing lane analysis techniques process the entire image
frame to extract the lane features. This not only increases
computation time but also leads to an overkill of computing
resources, and both these metrics are critical metrics for
realizing efficient on-board lane analysis systems.

In this paper, we ask the question: Why do we need to
process the entire image frame to extract less than 5% of
the valuable information? We derive inspiration from from
studies in selective saliency directed processing of human
vision [10], [11] to propose a selective salient feature based
lane analysis method. The proposed approach does not pro-
cess the entire image looking for lane features. Instead, we
devise a selective approach that looks for salient lane features
in limited but necessary number of places in the image, and
capturing salient features that give a good indication that they
are indeed lane features. We also show how the conventional
road and vehicle models and lane tracking techniques can
still function with acceptable accuracy but with selected
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Fig. 1. Typical lane analysis approach involves analyzing the entire input
image frame to extract salient lane features in the image that are further
processed to estimate and track lanes in the road scene

salient lane features, instead of all possible lane features that
are used in existing methods.

The rest of the paper is organized as follows. We take
a look at some related and recent lane analysis methods in
Section II. The proposed selective lane analysis approach
is presented in Section III. A detailed evaluation of the
proposed method in terms of its accuracy and performance,
and its tradeoffs is presented in Section IV followed by
conclusions drawn in Section V.

II. RELATED WORK

A detailed survey of various lane analysis techniques is
presented in [2] and more recently in [8]. One of more
complete lane analysis techniques in recent times is VioLET
that was proposed in [2] uses steerable filters for detecting
directional lanes. Road and vehicle models with Kalman
filtering to robustly estimate and track lanes. One of the
main contributions in this work is a quantitative method
to evaluate the lane analysis performance. Another recent
work that uses steerable filters is the integrated lane and
vehicle detection approach by Sayanan et al in [9]. In this
approach lanes and vehicles are used to detect each other
more deterministically because of the driving property that
vehicles are usually localized within their lanes.

While [2], [9] take advantage of the gradient information
of the lanes on the road surface, [5] uses the color property
of the lanes to extract lanes from roads. Different color
spaces are used to differentiate lanes from road surface in [5].
Another approach to detecting lanes is proposed in [6], which
employs Haar-like and Gabor filter-based feature extractors
to detect lane features. A cascaded classifier is further used
to confirm the presence of lane features.

Another approach to lane analysis is presented in [3]
recently which uses does a two-level lane feature extraction
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step followed by outlier removal using RANSAC. The two-
level lane feature extraction involves an adaptive thresholding
that highlights the lane features, which are collected using a
coarse-grained Hough transform. The candidates are further
analyzed at specific points along the lines indicated by Hough
transform using a correlation operation using a Gaussian-like
template.

These are some of the complete and robust lane analysis
techniques. A more detailed listed of techniques, their ad-
vantages and disadvantages is presented in [8]. A study of
these existing method showed that all these methods process
the entire image (or a region of interest defined by the lower
half of the image) to select a few lane feature points, which
are processed further. Though [3] scans for lane features at
specific points in the image, the pre-processing stage involves
full image scan and computations like Hough transform. In
most of these methods, the saliency of the lane features is not
fully exploited to extract them from the image in a selective
manner.

III. PROPOSED LANE ANALYSIS APPROACH - LASER

In this section, we describe LASeR - lane analysis using
selective regions. As discussed earlier, it is proposed to
process the input video frames in a selective manner, keeping
in view the saliency of lane features. LASeR will first extract
sufficient lane features from selected regions in the image,
that will then be used for lane estimation and tracking.

A. Selective Band-based Lane Feature Extraction

In this method, instead of processing the entire image or
an RoI (usually the lower part of the image) for extracting
lane features as shown in [2], we propose to use Ns number
of scan bands that are only wB pixels in height. It will be
shown that processing sufficient number of such scan bands
and extracting lane features in these bands gives acceptable
levels of lane detection accuracy.

The first step in LASeR is to transform the input image
into the inverse perspective mapping domain (IPM) [12].
We apply steerable filters in selected scan bands in the IPM
image to extract lane features efficiently.

1) Steerable Filters on Scan-bands in IPM Image: In [13],
steerable filter for any arbitrary orientation is derived in the
following way. Given a Gaussian filter G(x,y) as:

G(x,y) = e−
x2+y2

σ2 , (1)

we have the derivatives of G(x,y) along x and y direction
given by

Gx(x,y) =
∂

∂x
G(x,y) =

−2x
σ2 e−

x2+y2

σ2 (2)

Gy(x,y) =
∂

∂y
G(x,y) =

−2y
σ2 e−

x2+y2

σ2 (3)

The filter response for any angle can be computed using
Gx(x,y) and Gy(x,y) using the following equation:

Gθ (x,y) = Gx(x,y)cosθ +Gy(x,y)sinθ (4)

In [2], the angles for which the steerable filters give
maximum/minimum response, is determined by maximiz-
ing/minimizing the above equation to give θmin and θmax at
every pixel coordinate in the image domain, which are given
by:

θmax = arctan(
Gxx−Gyy−A

2Gxy
) (5)

θmin = arctan(
Gxx−Gyy +A

2Gxy
) (6)

where A =
√

G2
xx−2GxxGyy +G2

yy +4Gxy. These maxima
angles are used to find the image pixel coordinates that are
along the lane markings and extract possible lane features.
This involves computation of θmax for every pixel in the
image domain in order to capture the varying lane orientation
in the image domain.

The following steps are employed in the proposed lane
feature extraction step of LASeR such that the image is
processed selectively and yet extract sufficient lane features
information for further processing.

1) The image I is converted to IPM image IW .
2) Ns scan bands are selected from IW , each of height wB

(called as scan-band height henceforth).
3) In each scan band Bi, we look for response to vertical

steerable filters only.
4) The steerable filter response obtained from the previous

step in each band is then subjected to what we call a
shift-and-match operation, that extracts lane features
from steerable filter response.

5) These selected features from each scan band are then
sent to outlier removal using road models and lane
tracking.

We will now elaborate on the above steps. Firstly, unlike
in the image domain, IPM domain gives a more regular lane
formation. This advantage has been used in various lane
estimation methods but for the purpose of outlier removal
after finding initial lane features. In the proposed method,
we take advantage of the regular and predictable nature of
the lanes in IPM domain from the very beginning. We select
Ns scan bands from the IPM image IW . Considering that
each scan band height is only wB pixels, the lanes will
appear as short vertical segments with each scan band. This
is shown in Fig. 2. This vertical appearance is also because
the angular variations of the lanes is predictably towards 0o

(vertical direction) in the IPM image. Therefore, applying
vertical steerable filters on the scan bands will amplify the
lane edges. There will be other non-lane features also that
could also be selected but they will be eliminated in the next
step. Therefore, instead of find the maximum angle at every
image pixel coordinate, we propose to apply on G0◦(x,y)
filter to a selected set of pixels in each band of the IPM
image. From (4) & (1), we get,

G0◦(x,y) = Gx(x,y) =
−2x
σ2 e−

x2+y2

σ2 (7)

Convolving G0◦(x,y) with pixels in each scan band Bi, we
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have the steerable filter response BS
i , i.e.,

BS
i = Bi⊗G0◦(x,y). (8)

The filter response BS
i of each scan band is now examined for

lane features using the proposed shift-and-match operation.
2) Shift-and-Match Operation (SMO) for Lane Feature

Extraction: The filter response BS
i in each band captures

gradient changes along the vertical direction. In order to
eliminate filter responses due to non-lane edges, we first
apply two thresholds T+ and T− on BS

i . These thresholds
capture two different kinds of intensity transitions in BS

i . T+
captures dark to light transition, whereas the T− captures
light to dark transition. The result binary maps are denoted
as E+ and E−. Fig. 2 shows the result of the two thresholds
on the steerable filter response of upper scan band selected
in the IPM image in Fig. 2.

Fig. 2. Generating steerable filter output from bands.

It can be seen that E+ and E− have non-lane features
also. We now propose shift-and-match operation (SMO) to
extract lane features and eliminate non-lane features from
each band. In order to do this, we compute the horizontal
projection vectors p+ and p− for E+ and E−, i.e. for scan
band of wB pixels high and NB pixels wide, we have

p+ =

[
wB

∑
k=1

E+(1,k),
wB

∑
k=1

E+(2,k), . . .
wB

∑
k=1

E+(NB,k)

]
(9)

p− =

[
wB

∑
k=1

E−(1,k),
wB

∑
k=1

E−(2,k), . . .
wB

∑
k=1

E−(NB,k)

]
(10)

Peaks are formed in these projection vectors where there
are clusters of pixels in E+ and E−. Fig. 3 shows the plot
of p+ and p− for the band that was thresholded in Fig. 2.

Lane marking feature has the following property: it has
two intensity transitions, dark→light followed by light→dark
and separated by a fixed number of pixels δ in the IPM image
IW . Therefore, the peaks corresponding to the lane edges
in p+ and p− are also separated by a small δ . In order to
capture these pairs of transitions of lanes, p+ is shifted by
δ places to the left and multiplied with p− resulting in the
vector KBi for scan band Bi, i.e.,

K = (p+ << δ )�p− (11)

where � represents point-wise multiplication. We call this
the shift-and-match operation (SMO). Fig. 3 shows the result
of the shift and match operation performed on p+ and p−
for the upper band selected in Fig. 2. It can be seen that

Fig. 3. Illustrating shift and match operation for band Bi

SMO eliminates most of the peaks that are formed by non-
lane features and retains the peaks corresponding to the lane
features in Bi. In Fig. 3, the peak locations correspond to the
dark to light transition edge of the lane feature markings in
Fig. 2 for both the left and right lanes of the host lane. The
locations of the peaks in KBi for each scan band Bi are then
used along with the road model and lane tracker to eliminate
non-lane outliers that may be picked up by SMO (because
of them having similar properties as the lane features).

B. Outlier Removal & Lane Tracking

The band-based lane feature extraction step gives positions
of possible lane markings in each band. Let PBi denote the
set of coordinates of possible lane markings in each band Bi,
i.e.,

PBi = [P1i(x1,yi),P2i(x2,yi), . . . ,Pki(xk,yi), . . . ,PNi,i(xNi ,yi)]
(12)

where Pki(xk,yi) denotes the k-th coordinate of a lane feature
in the i-th scan band, and Ni is the total number of lane
marking features detected in the i-th scan band. Therefore,
we get Ns such arrays corresponding to the Ns scan bands.
This is illustrated for Ns = 3 in Fig. 4. These lane features
points in each scan band must now be associated with each
other across scan bands to visualize the correct lanes and
eliminate any non-lane outliers that may been picked up by
SMO in the previous step. In order to do this, we apply
the clothoid road model illustrated in [2] to associate the
positions of the lane features across bands. Referring to the
road model shown in Fig. 4, the clothoid model gives the x-
coordinate in the IPM given the vehicle deviation φ from the
center of the lane and the y-coordinate (vertical axis) using
the following equation:

XW = φ +θYW +CY 2
W (13)

where (XW ,YW ) is a world coordinate of a point in the IPM
image, φ is the lateral deviation of the vehicle from the center
of the lane, C is the curvature of the road and θ is the yaw
angle of the vehicle. The last two parameters, i.e. C and θ are
obtained from the vehicle dynamics captured using CAN bus.
When (XW ,YW ) are calibrated with the IPM image scale, we
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get the corresponding (xw,yw) coordinates in the IPM image
domain.

Fig. 4. Vehicle and clothoid road model as seen in world coordinate system
(or IPM image domain) is shown. The y-coordinates of the scan bands in
the proposed method are used to estimate the possible location of the lane
feature points in each scan band using the clothoid road model defined by
(13).

In LASeR, we apply this road model to remove outliers
(non-lane features) that are picked in each scan band. Unlike
existing techniques, which apply the road model to all the
feature points that possibly form the lane in the image, we
apply the road model to the points that are found in each scan
band, i.e. the points in each PBi . This reduces the computa-
tional cost tremendously as compared to conventional way of
applying the road model to eliminate outliers and visualize
the lanes. Therefore, in LASeR, (13) is applied to the lane
feature coordinates collected in PBi . This is illustrated in Fig.
4, wherein the y-coordinates of the scan bands are used to
estimate the possible location of the lane feature points in
each scan band using the clothoid road model that is defined
by (13). Any lane feature point in PBi that does not satisfy the
road model is eliminated. The same model can be extended
further to detect neighboring lanes also, but this is out of
scope of this paper.

The above method of outlier removal using the road model
is effective, if we can determine the lateral deviation of the
vehicle φ in the lane accurately. In order to do this, the
proposed method uses the lane feature positions of the scan
band that is closest to the ego-vehicle, i.e. scan band B1 in
Fig. 4. However, depending on the presence of lane markings
and type of lane markings, the lowermost scan band B1 may
not always detect the lane features. In order to continuously
track the lane features in scan band B1 (so that we can track
the features in the other scan bands also), we apply Kalman
filter tracking to the lane features obtained in the lower most
scan band. It was observed that the lowermost scan band is
the most predictable in terms of the lane features as compared
to the upper bands and hence tracking the lane markings is
effective in getting the lane positions continuously across
time. These lane positions can then be used to determine the
lateral offset of the vehicle in the lane, i.e. φ . The Kalman
filter used for tracking the center of the vehicle in the lane

is defined by the following state variables:

xk+1|k = Axk|k and yk = Mxk (14)

where x, A and M are defined as follows:

x = [φ , tanθ ,W ]T (15)

A =

1 v∆t 0
0 1 0
0 0 1

 ; M =

1 0 0
0 1 0
0 0 1

 (16)

In the above equations, φ is the lateral deviation of the car
from center of the lane, θ is the yaw angle of the car, v is
the vehicle speed and W is the width of the lane. The yaw
angle and vehicle speed are obtained from the CAN bus. The
world coordinates of the left and right lanes X l

W and X r
W are

approximated using the following equations [9]:

X l
W = φ − 1

2
W ; X r

W = φ +
1
2

W. (17)

X l
W and X r

W are then calibrated to the IPM image domain
to the lanes in the IPM image. Inversing the IPM results in
visualizing the lanes in the image domain.

IV. PERFORMANCE EVALUATION

In this section, LASeR is evaluated using the test video
datasets obtained by LISA-Q2 testbed [14], that is equipped
with a front facing camera that captures 640× 480 video
sequences at nearly 20 frames per second. The vehicle
dynamics that are used for lane tracking and road model
fitting are captured using the in-vehicle CAN-bus. Test
video sequences were captured under different lighting and
road conditions, freeways and urban roads. Table I lists the
different datasets (each with a minimum of 250 frames) that
are used for evaluation. In addition to these datasets, we also
captured 6000 frame video sequence on the freeway for the
evaluating lane localization, which will be discussed next.

TABLE I
DATASET DESCRIPTION

Set 1 Freeway Set 2 Freeway
lanes with

vehicles

Set 3 Freeway Set 4 Freeway
concrete circular
surface reflectors

Set 5 Urban
road
with

shadows

A. Evaluation of Lane Localization

LASeR was evaluated for lane localization using the
evaluation method described in [2]. In order to do this, we
fixed a downward facing camera equipped with a wide angle
lens on the left side of the testbed. This camera captures
the left lane marking with minimal perspective distortions.
More details about ground truth generation can be found in
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Fig. 5. Evaluation of ego-vehicle localization of the proposed lane tracking technique against ground truth data.

[14]. The test run for evaluation was conducted on a freeway
in California state and a sequence comprising 6000 frames
was used for evaluating the lane markings that are extracted
by the proposed lane analysis technique. We consider the
positions of left lane feature from the scan band that is closest
to the ego vehicle for evaluation against the ground truth data.

Fig. 5 shows the lane localization of the left lane with
respect to the front facing camera (i.e. the middle of the
car). It can be seen that for most part of the drive, the left
lane marking detected by LASeR using the selected scan
bands follows the ground truth position for the left lane. The
average absolute error between the two is found be less than
8 centimeters. There are some instances where we see large
deviations from the ground truth. All those deviations were
found to be when the vehicle were drifting to the next lane
or changing lanes.

B. Evaluation of Detection Rates

Firstly, Fig. 6 shows some sample images with lanes that
are extracted from complex road scenes by applying LASeR
on input images from the datasets listed in Table I. It can
be seen that LASeR is able to extract lanes in varying lane
conditions like cracks (Fig. 6(a)-(c)), presence of vehicles
(Fig. 6(d)), presence of strong shadows (Fig. 6(e)-(g)). The
proposed method is also able to extract lanes with circular
reflectors as shown in Fig. 6(e)&(f), and on Korean roads as
shown in Fig. 6(h).

Fig. 7 shows detection accuracy results in datasets 1, 2 and
3, in which we are evaluating the detection of dashed lane
markings (i.e. no circular reflectors or solid lane boundaries).
The effect of changing the number of scan bands and the
scan band height on detection accuracy is shown in Fig. 7.
It is evident that reducing the number of scan bands will
reduce the detection accuracy of the lane features because
depending on the position of the lane marker and the speed
of the vehicle, the scan band at a particular coordinate may
fail to detect the lane marking (which we consider as failed
detection). Therefore, having more number of scan bands
increases the detection rate as seen in Fig. 7 for both cases
of the scan band height, i.e. 10 and 5 pixels. The detection
accuracy with 8 scan bands is over 90% in all test datasets.
This is an important observation because this implies that
for the IPM images of size 360×500, processing just 8 scan
lines with 10 pixels each is sufficient to get a detection rate of
95%, instead of processing the entire 360×500 sized image

Fig. 6. Sample results of lane detection by LASeR in complex road scenes:
(a) curved road with linear edges and lane like markings, (b)&(c) uneven
road surface with linear features along the lane markings, (d) presence of
overtaking vehicles, (e) circular reflectors and shadows, (f) circular reflectors
and faint lanes under heavy shadow, (g) lanes on urban roads with frequent
shadows, (h) Korean lanes.

Fig. 7. Detection rate versus number of scan bands for scan band height
= 10 in (a) and 5 in (b).

(which is usually the case in most conventional methods).
This figure also plots the detection accuracy for varying scan
band height, i.e. wB = 10 and 5 in Fig. 7(a) & (b) respectively.
A higher scan band captures more information, implying
better detection rate. Therefore, it is expected that bands with
height of 5 pixels have lesser detection rate. However, it is
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noteworthy that as the scan lines increase to 8, the detection
rate is nearing 90-95% in both the cases of scan band height.
It can also be seen that for a band height of 10 pixels, the
difference in accuracy between Ns = 8 and 4 is less than 20%
in each dataset. Therefore, one can decide to go for 4 scan
bands instead of 8, trading off accuracy by less than 20%
for half the amount of computation cost.

The effectiveness of the proposed technique to detect
circular reflectors is illustrated in Fig. 8. It can be seen
that a detection accuracy of 85% is obtained using 8 scan
bands with each band of 10 pixels high. A comparison on
the effect of reducing the number of scan bands and their
height is also shown in Fig. 8. It can be seen that reducing
the scan band height also reduces the detection rate. For the
same number of scan bands but scan band height reduced
to 5 pixels, the detection rate has been reduced to about
40%. This is because thinner scan bands fail to completely
and conclusively capture the circular reflectors. Therefore,
having thicker scan bands and more number of scan bands
to sample as many reflectors as possible is desirable to get
higher accuracy in the case of circular reflectors.

Fig. 8. Detection rate versus
number of scan bands for Set 4
with circular reflectors.

Fig. 9. Detection rate for urban
lane scenario with solid lane in
Set 5.

Fig. 9 shows the detection rates for varying scan bands
to detect solid right lane in urban road context (Set 5). It
can be seen that detection rates of over 90% are achieved
for all band heights and any number of scan bands. Also,
the dataset was chosen such that there are heavy shadows
of trees in the images (which usually is the case in most
urban road scenarios). These detection rates imply that it is
an overkill if more than 4 scan bands are used for detecting
solid lanes. This gives us an interesting possibility of merging
the information from GPS and road maps, and operate with
the required number of scan bands only, if it is known where
the vehicle is being driven.

In addition to accuracy, LASeR also allows for low com-
putational complexity as compared to other lane estimation
methods. However, this analysis is out of scope of this paper.
More analysis on computational complexity of LASeR can
be found in [15].

V. CONCLUSIONS

In this paper, we proposed LASeR that estimates and
tracks lanes by extracting salient lane features from selective
scan bands. It is shown that processing narrow bands of the
image gives sufficient information because of the saliency
of the lane features. A detailed evaluation with ground

truth information showed that LASeR gives an error of less
than 8 centimeters for ego-vehicle localization on a dataset.
The evaluation also showed that having 8 scan bands gives
detection rates as high as 95%. As part of future work, it is
envisaged to use LASeR for context-aware lane analysis.
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