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Abstract—This document provides a review of the past
decade’s literature in on-road vision-based vehicle detection.
Over the past decade, vision-based surround perception has
matured significantly from its infancy. We detail advances
in vehicle detection, discussing representative works from the
monocular and stereo-vision domains. We provide discussion on
the state-of-the-art, and provide perspective on future research
directions in the field.

Index Terms - Active Safety, Driver Assistance, Real-time
Vision, Machine Learning.

I. INTRODUCTION

TEns of thousands of drivers and passengers die on
the roads each year, with most fatal crashes involving

more than one vehicle [1]. The research and development of
advanced sensing, environmental perception, and intelligent
driver assistance systems presents an opportunity to help save
lives and reduce the number of on-road injuries. In recent
years, there has been significant research effort dedicated
to the development of intelligent driver assistance systems
and autonomous vehicles, intended to enhance safety by
monitoring the on-road environment.

In particular, the on-road vehicle detection has been a topic
of great interest [2]. A variety of sensing modalities have
become available for on-road vehicle detection, including
radar, lidar, and computer vision. Imaging technology has
progressed immensely in recent years. Cameras are cheaper,
smaller, and of higher quality than ever before. Concurrently,
computing power has increased dramatically. Further, in
recent years, we have seen the emergence of computing
platforms geared towards parallelization, such as multi-core
processing, and graphical processing units [GPU]. Such hard-
ware advances allow computer vision approaches for vehicle
detection to pursue real-time implementation.

Vision-based vehicle detection uses one or more cameras
as the primary sensor suite. Cameras measure the ambient
light in the scene. In its simplest form, a digital imaging
system consists of a lens, and an imaging array, typically
CCD or CMOS. Within the field of view of a vehicle-mounted
camera, a point in the 3D world is mapped to a pixel in
a digital image [3]. Going from pixels to vehicles is not
straight-forward. A visual object detection system requires
camera-based sensing to measure the scene’s light, as well
as computational machinery to to extract information from
raw image data [3]. Figure 1 depicts vehicle detection using
vision.

With advances in camera sensing and computational tech-
nologies, advances in vehicle detection using monocular
vision, stereo-vision, and sensor fusion with vision have
been an extremely active research area in the intelligent
vehicles community. On-road vehicle tracking has also been

Fig. 1. Vision for on-road vehicle detection uses cameras, which
sense the ambient light. Points in the camera’s field of view
are mapped to pixels via perspective projection. Computer vision
techniques, further detailed in this paper, recognize and localize
vehicles from images and video.

extensively studied. It is now commonplace for research
studies to report the ability to reliably detect and track on-
road vehicles in real-time, over extended periods [4], [5],
[6]. Table I highlights representative works in vision-based
vehicle detection.

In this paper, we provide a review of vision-based vehicle
detection. We concentrate our efforts on works published
since 2005, referring the reader to [2] for earlier works. We
then review vision-based vehicle detection, commenting on
monocular vision and stereo-vision. We provide our insights
and perspectives on future research directions in vision-based
vehicle detection.

II. MONOCULAR VEHICLE DETECTION

We divide vehicle detection approaches into two broad
categories: appearance-based, and motion-based methods.
Appearance-based methods recognize vehicles directly from
images, that is to say that they go directly from pixels to
vehicles. Motion-based approaches, by contrast, require a
sequence of images in order to recognize vehicles. As monoc-
ular images lack direct depth measurements, appearance-
based methods are more common in the monocular vehicle
detection literature.

A. Appearance: Features

Early works in monocular vehicle detection used symmetry
and edge features to detect vehicles in images [26], [27],
[28], [29]. In recent years, there has been a transition from
simpler image features like edges and symmetry, to general
and robust features sets for vehicle detection. These feature
sets, now common in the computer vision literature, allow
for direct classification and detection of objects in images.
HOG and Haar-like features are extremely-well represented
in the vehicle detection literature, as they are in the object
detection literature [30], [31].

Histogram of oriented gradient [HOG] features [30] have
been used in a number of studies [32], [33]. In [34], the
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TABLE I
REPRESENTATIVE WORKS VISION-BASED VEHICLE DETECTION

Monocular Vision
Research Study Motion/ Appearance Description Comments
Sun et al., 2006 [7] Appearance HOG and Gabor features, SVM and neural

network classification
Feature and classifier evaluation. Evaluation
on static images.

Zhu et al., 2006 [8] Motion Dynamic background modeling of overtake
area

Validation on real-world video, with ego-
motion compensation.

Wang and Lien, 2008 [9] Appearance Statistical modeling of local features Detection of sedans in statics image. Eval-
uation is performed on static images.

Diaz-Alonso et al., 2008 [10] Motion Optical flow for blind spot detection Detection results were validated with lidar
for ground truth, and TTC validation.

Chang and Cho, 2010 [11] Appearance Haar-like features, boosted classification,
online learning

Online learning allows for adaptation to new
environments.

Sivaraman and Trivedi, 2010
[12]

Appearance Haar-like features, Adaboost classification,
active learning

Active learning shown to improve detection
and false alarm rates, evaluated on highway
video.

Yuan et al., 2011 [13] Appearance HOG features, SVM classification. Orienta-
tion determined using multiplicative kernel
learning

Vehicles are oriented using matched detec-
tors. The same framework was shown to
work for hand gestures and head rotation.

Jazayeri et al., 2011 [14] Motion Optical flow, hidden Markov model classi-
fication

Modeling the position and motion of pre-
ceding vehicles in the image plane.

Niknejad et al., 2012 [15] Appearance HOG features, deformable parts-based
model

Adaptive threshold for detection in urban
environments.

Lin et al. 2012 [16] Appearance SURF and edge features, probabilistic clas-
sification, blind spot detection

Front and side car models were evaluated to
accommodate different views of blind-spot
vehicles.

Stereo Vision
Research Study Motion/ Appearance Description Comments
Chang et al. 2005 [17] Appearance Size, width, height, image intensity features,

Bayesian classification
A combination of object geometry,
template-matching, image features, and
depth map features were used for vehicle
detection from single stereo pair. Evaluation
in parking lot.

Cabani et al. 2005 [18] Appearance Color, 3D vertical edges Sparse stereo matching using L*a*b* color
image pairs, and vertical edges, in order to
detect vehicles and obstacles.

Franke et al., 2005 [19] Motion Optical flow Optical flow interest points are tracked in
the image plane, and their corresponding 3D
positions and velocities are tracked using
Kalman filtering.

Badino et al., 2007 [20] Motion Occupancy grid, free space computation 6D vision points are tracked. Stochastic
occupancy grids are solved using dynamic
programming, and free space is computed.

Barrois et al., 2009 Appearance Clustering of 3D points, vehicle orientation
estimation

Clustering of points in 3D using polar iter-
ative closest point algorithm. Points are fit
to a cuboid model, and pose is inferred.

Barth and Franke, 2009 [21] Motion Optical flow, clustering 6D points 6D vision points are tracked over time,
with objects formed by clustering using the
Mahalanobis distance.

Broggi et al., 2010 [22] Appearance V-disparity, clustering in the disparity space Detection in the disparity space image.
Danescu et al., 2011 [23] Motion Optical flow, particle-based occupancy grid Occupancy grid cells are represented by

particles that serve a dual purpose. In a con-
ventional particle filtering framework, each
cell as a position and velocity. Particles also
carry a probability of the cell’s occupancy.

Erbs et al., 2011 [24] Motion Tracking stixels, fitting probabilistic cuboid
model

Stixels, vertical intermediate representations
of 3D points, are tracked using Kalman
filtering. Stixels with similar motion are fit
to a cuboid model for vehicle detection and
tracking.

Perrollaz et al., 2012 [25] Motion Optical flow, spatio-temporally smoothed
occupancy grid

The occupancy grid is also smoothed in
the time and spatial domains to account for
noise and outliers.
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symmetry of the HOG features extracted in a given image
patch, along with the HOG features themselves, was used
for vehicle detection. HOG features are descriptive image
features, allowing for for determination of vehicle pose
[35]. The main drawback of HOG features, is that they are
quite slow to compute. Recent work has tackled the speed
bottleneck by implementing HOG feature extraction on a
graphical processing unit [GPU] [36].

Haar-like features have also been used for vehicle detection
in a number of studies [7] [37][38] [39] [33] [12] [40]. Haar-
like features are popular for two main reasons. First, Haar-like
features are well-suited to the detection of horizontal, vertical,
and symmetric structures. Second, by using the integral image
[31], feature extraction is very fast, allowing for real-time
performance on a standard CPU.

While studies that use either HOG or Haar-like features
comprise a large portion of recent vehicle detection works,
other general image features have been used. SIFT features
[41] were used in [42] to detect the rear faces of vehicles,
including during partial occlusions. In [16], a combination of
speeded-up robust features [43] and edges is used to detect
vehicles in the blind spot. In [44] Gabor and Haar features
were used for vehicle detection. Gabor features were used in
[7], in concert with HOG features. Dimensionality reduction
of the feature space, using a combination of PCA and ICA
was used in [9] for detecting parked sedans in static images.

B. Appearance: Classification

Classification methods for appearance-based vehicle detec-
tion have followed the general trends in the computer vision
and machine learning literature. In [7], [45], artificial neural
networks were used to classify extracted features for vehicle
detection.

Support vector machines [46] have been widely used for
vehicle detection, often using HOG features [29], [7], [33],
[32]. The HOG-SVM formulation was extended to detect and
calculate vehicle orientation using multiplicative kernels in
[13].

Adaboost [47] has also been widely used for classification,
largely owing to its integration in cascade classification in
[31]. The combination of Haar-like feature extraction and
Adaboost classification has been used to detect rear faces
of vehicles in [38] [48] [49]. The combination of Haar
features and Adaboost classification was used to detect parts
of vehicles in [50]. In [51], Waldboost was used to train the
vehicle detector.

Generative classifiers have been less common in the vehicle
detection literature. It often makes sense to model the classi-
fication boundary between vehicles and non-vehicles, rather
than the distributions of each class. In [16] a probabilistically-
weighted vote was used for detecting vehicles in the blind
spot. In [14], motion-based features were tracked over time,
and classified using hidden Markov models. In [9], Gaussian
mixture modeling was used to detect vehicles in static images.
In [42], hidden random field classification was used to detect
the rear faces of vehicles.

Recently, there has been interest in detecting vehicles
as a combination of parts. The motivation consists of two
main goals: encoding the spatial configuration of vehicles for
improved localization, and using the parts to eliminate false
alarms. In [16], a combination of SURF and edge features
are used to detect vehicles, with vehicle parts identified by
keypoint detection. In [42], vehicles are detected as a combi-
nation of parts, using SIFT features and hidden Conditional
Random Field classification. In [52], spatially-constrained
detectors for vehicle parts were trained; the detectors required
manual initialization of a reference point. The deformable
parts-based model [53], [54], using HOG features and the
Latent-SVM, has been used for on-road vehicle detection
in [55], [15]. In [50], the front and rear parts of vehicles
were detected independently, and matched using structural
constraints, encoded by an SVM.

C. Motion-Based Approaches

Motion-based monocular vehicle detection has been less
common that appearance-based methods. In [56], [57], adap-
tive background modeling was used, with vehicles detected
based on motion that differentiated them from the back-
ground.

Optical flow [58], a fundamental machine vision tool,
has been used for monocular vehicle detection [59]. In
[60], a combination of optical flow and symmetry tracking
was used for vehicle detection. In [14], interest points that
persisted over long periods of time were detected as vehicles
traveling parallel to the ego vehicle. Ego-motion estimation
using optical flow, and integrated detection of vehicles was
implemented in [61], [62], [63]. In [10], optical flow was
used to detect overtaking vehicles in the blind spot.

III. STEREO-VISION FOR VEHICLE DETECTION

Motion-based approaches are more common than
appearance-based approaches to vehicle detection using
stereo-vision. Multi-view geometry allows for direct
measurement of 3D information, which provides for
understanding of scene, motion characteristics, and physical
measurements. The ability to track points in 3D, and
distinguish moving from static objects, affects the direction
of many stereo-vision studies. While monocular vehicle
detection often relies on appearance features and machine
learning, stereo vehicle detection often relies on motion
features, tracking, and filtering.

A. Appearance-Based Approaches

Exclusive reliance on appearance cues for vehicle detection
is not as common in stereo-vision as monocular vision. While
motion-based approaches are more common, even studies
that rely on motion for vehicle detection often often utilize
some appearance-based stereo-vision techniques for initial
scene segmentation, including free space understanding [20],
and ground surface modeling [64]. In [17], features such as
size, width, height, and image intensity were combined in a
Bayesian model to detect vehicles using a stereo rig. In [65],
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a histogram of depths, computed from stereo matching, was
used to segment out potential vehicles.

Various studies have utilized clustering in the depth map
for object detection, often using euclidean distance to cluster
point clouds into objects [66], [67]. Clustering was also
used for object detection in [68]. In [69], clustering was
implemented using a modified version of iterative closest
point, using polar coordinates to segment objects. The imple-
mentation was able to detect vehicles, and infer the vehicle’s
pose with respect to the ego vehicle. Clustering was used in
tandem with image-based mean shift algorithm for vehicle
detection in [70].

B. Motion-Based Approaches

The use of motion features heavily in stereo-based vehicle
detection. The foundation for a large portion of stereo-vision
analysis of the on-road scene starts with optical flow [58]. In
many studies, interest points are tracked in the monocular
image plan of one of the stereo rig’s cameras, and then
localized in 3D using the disparity and depth maps [71].
Optical flow is also used as a fundamental component of
stereo-vision analysis of the on-road scene in [72] [73] [74]
[65] [75] [76] [77] [23] [71] [70].

In [71], the concept of 6D-vision, the tracking of interest
points in 3D using Kalman filtering, along with ego-motion
compensation, is used to identify moving and static objects
in the scene. In [24], tracked 3D points, using 6D vision,
are grouped into an intermediate representation consisting
of vertical columns of constant disparity, termed stixels.
Stixels are initially formed by computing the free space in
the scene, and using the fact that structures of near-constant
disparity stand upon the ground plane. The use of the stixel
representation considerably reduces the computation expense
over tracking all the 6D vision points individually. The
tracked stixels are classified as vehicles using probabilistic
reasoning and fitting to a cuboid geometric model.

Occupancy grids are widely used in the stereo-vision liter-
ature for scene segmentation and understanding. In [68][78],
scene tracking and recursive Bayesian filtering is used to
populate the occupancy grid each frame, while objects are de-
tected via clustering. In [23], the occupancy grid is populated
using motion cues, with particles representing the cells, their
probabilities the occupancy, and their velocities estimated for
object segmentation and detection.

IV. DISCUSSION AND FUTURE DIRECTIONS

While vehicle detection has been an active research area
for quite some time, open challenges still remain. Monocular
and stereo-vision vehicle detection each have their established
paradigms. Monocular vehicle detection largely relies on a
feature extraction-classification paradigm, based on machine
learning. Stereo-vision’s typical paradigm consists of ego-
motion compensation, tracking feature points in 3D, distin-
guishing static from moving points, and associating moving
points into moving objects [23]. There is ample space for

more integrated approaches, that borrow key elements from
each paradigm.

Monocular vehicle detection largely relies on a feature
extraction-classification paradigm, based on machine learn-
ing. This approach works very well when the vehicle is fully-
visible. In particular, robustly detecting partially-occluded
vehicles using monocular vision remains an open challenge.
Early work in this area is ongoing, based on detecting
vehicles as a combination of independent parts [50], but
detecting partially-occluded vehicles remains a challenging
research area. Using parts to detect vehicles has been im-
plemented in [15], but the recognition still has difficulty
with occlusions. Future works will need to include motion
cues into monocular vehicle detection, to identify vehicles as
they appear, while seamlessly integrating them into machine
learning frameworks. Further, it is challenging to develop
a single detector that works equally well in all the varied
conditions encountered on the road. Scene-specific classifiers,
categorizing the on-road scene as urban vs. highway, cloudy
vs. sunny could augment the performance of vehicle detec-
tors, utilizing image classification as a preprocessing step
[79].

Object detection using stereo-vision has also made great
progress over the past decade. Stereo-vision methods typi-
cally recognize vehicles in a bottom-up manner. This is to say
that the typical paradigm consists of ego-motion compensa-
tion, tracking feature points in 3D, distinguishing static from
moving points, and associating moving points into moving
objects [23]. Finally, moving objects are labeled as vehicles
by fitting a cuboid model [77], or clustering [69]. While
these methods have made great progress, complex scenes
still present difficulty [24]. Integration of machine learning
methodology could increase the robustness of existent stereo-
vision approaches, and has the potential to simplify the
vehicle detection task. Research along these lines has been
performed by using machine learning based detection on the
monocular plane, integrating stereo-vision for validation and
tracking [80], [5], [65]. Future work could involve a more
principled machine learning approach, learning on motion
cues, image cues, and disparity or depth cues.

As the cost of active sensors, such as radar and lidar,
continue to reduce, integration of these sensing modalities
with vision will continue to increase in prevalence. Auto-
motive radar and lidar systems are fairly mature in their
ability to detect objects and obstacles, but their ability to
distinguish vehicles from other objects is limited. As lane
tracking cameras become standard options on serial produc-
tion vehicles, the opportunity to integrate vision with active
sensing technology will present itself, with vision providing
an intuitive level of semantic abstraction. Future works will
need a principled, object-level fusion of vision and radar/lidar
for vehicle detection [81]. Such an information fusion could
reduce estimation covariance and enhance robustness, al-
though the asynchronous nature of the multiple modalities
will need to be handled [82].
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