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TABLE II
FACE RECOGNITION USER STUDY: STATISTICS

ON THE PARTICIPANTS’ RESPONSE

of privacy is unacceptable, and in one case, a failed deiden-
tification attempt resulted in a lawsuit [37]. Two types of dei-
dentification methods are implemented: The first type preserves
the region around one eye with black pixel replacement for
the background, and the second preserves the region around
both eyes with black pixel replacement for the background.
These deidentification methods, henceforth, will be referred to
as one-eye and two-eyes, respectively. The evaluations of face
recognition on deidentified images can occur in one of two
ways, i.e., the human user study and the machine vision.

First, an automatic-machine-vision-based approach for face
recognition is implemented to get an objective measure on the
recognition rate. Training samples are taken from the list of
candidate images, as presented in the user study, and testing
samples are the deidentified images of the four drivers de-
scribed earlier. As features, eye regions are extracted, scaled,
aligned, and intensity normalized. The nearest neighbor algo-
rithm is then used to find the candidate image that is closest in
the feature space to the deidentified image. Using 800 testing
samples (200 samples per driver) that were randomly chosen
from video sequences of the four drivers, the results show a
recognition rate of 8%, which is less than random chance. Given
that there are 11 possible candidates (excluding the Unknown
that was available to the participants in the user study), the ran-
dom chance of recognition is 1/11 = 9.1%. Although machine
face recognition is more objective, it does not compare with a
human’s ability to recognize faces.

The second type of face recognition evaluation is with a user
study using human subjects. In the user study, the first step of
evaluation lies in justifying the pictures used in the options to
recognize the drivers in the deidentified images. To do this, one
participant performed the user study for recognition on images
before they are deidentified. With a recognition rate of 100%,
results show that the pictures used in the options satisfactorily
represent the raw images of looking at the driver. The second
part of the face recognition user study is evaluating the level of
recognition after deidentification. Ten participants took part in
this second part of the evaluation.

In the user study, we present deidentified images starting
with the deidentification method that reveals the least amount
of information to that which reveals the most about the driver’s
identity. Therefore, one-eye deidentification is presented first,
followed by the two-eyes deidentification. The sequence of the
images is randomly presented in each of the two cases. Table II

TABLE III
GAZE-ZONE ESTIMATION USER STUDY: STATISTICS

ON THE PARTICIPANTS’ RESPONSE

details the number of drivers, the number of samples accu-
mulated over all participants per driver, the recognition rate,
and the percentage of times the participants responded with
Unknown for the deidentification with one eye and two eyes.
Given that there are 12 possible candidates to choose from, the
random chance of recognition is 1/12 = 8.3%. Table II shows
that the mean recognition rate is less than or equal to the chance
for the deidentified images with one eye and with two eyes for
most of the drivers considered. On average, the recognition rate
is higher with two eyes than with one eye, as expected; however,
both are below the chance level. Notice that the participants
responded with a high percentage of Unknown with both one
eye and two eyes, indicating the difficulty in recognizing a
person with eyes only.

It is important to mention that the nature of the experiment, in
which the choices are given to pick one from, is very conserva-
tive, and subjects could use elimination tactics without actually
identifying the driver. For example, one participant noted that
eye color (e.g., dark or light) was one of his criteria for choosing
a candidate. Despite this, the recognition rate of any particular
driver and overall is very close to the chance level.

C. Gaze-Zone Estimation

We consider the gaze zones, as illustrated in Fig. 6(b), i.e.,
Left, Front, Right, Rear Mirror, and Inside. In the user study,
a total of nine expert participants classify the driver’s gaze
using the deidentified images of looking at the driver. The
deidentified image samples in the user study were chosen after
two experts used respective raw images, as well as the image
sequences around the interested frame for the temporal context,
to independently agree upon the correct label of gaze. Similar
to the user study for recognition, deidentified images with one
eye is presented first, followed by deidentified images with
two eyes. The participant pool between the user study for face
recognition and gaze estimation, however, is nonoverlapping. In
Table III, the number of samples over all participants, the clas-
sification accuracy, and the percentage of times the participants
responded with Unknown for each method of deidentification
and for each gaze zone is described. Notice that, in comparison
with the percentage of Unknown responses for face recogni-
tion, the percentage of Unknown responses for the gaze-zone
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Fig. 9. Confusion matrix for the five-gaze-zone classification by the participants of the deidentified images with (a) one eye and (b) two eyes. The gaze zones
are depicted in Fig. 6. Each row represents true gaze and each column represents the participant’s estimate of the gaze zone. Most of the elements in the diagonal
have higher percentages than the off-diagonal entries. On average, the gaze-zone estimation is 65% and 71% accurate for the deidentification with one eye and
that with two eyes, respectively.

Fig. 10. Five-gaze-zone performance of the deidentified images with (a) one eye and (b) two eyes. Gaze zones are depicted in Fig. 6. Each row represents true
gaze and each column represents the participant’s estimate of the gaze zone. Each element in this matrix of images is a cropped image of one of the highest
participant responses in the respective categories.

estimation is very small. This strengthens our goal of deidenti-
fying drivers yet preserving the driver’s gaze.

Furthermore, the gaze-zone classification accuracy on the
deidentified images with one eye and two eyes is 65% and 71%,
respectively, which are well above the chance of 20% for the
five gaze zones considered. A confusion matrix, as given in
Fig. 9, gives insight into the misclassification of gaze zones.
As expected, there are misclassifications among neighboring
gaze zones. The Left gaze, for instance was only confused with
the Front gaze, whereas the Front gaze was confused with all
but the Rear Mirror gaze. On the other hand, the Rear Mirror
gaze was sometimes confused with the Front gaze because
some rearview mirror glances were very subtle. Furthermore,
the Rear Mirror gaze was significantly confused with the Right
gaze. Although the participants were asked to choose the zone
that better matches the driver’s gaze than all others, it is not
incorrect to assume a rightward gaze when a driver is gazing at
the rearview mirror. Similarly, the Inside gaze is significantly

confused with the Front gaze and the Right gaze. It is expected
since gazing at the gauge and the instrument panel invokes
gazes similar to the Front and Right gazes, respectively. In
Fig. 10, an extension of the confusion matrix is presented,
in which each row represents true gaze, and each image is
one of the most recurring deidentified images in the respective
positions in the confusion matrix for the deidentifications with
one eye and two eyes.

Interestingly, there are instances in which the deidentified
image with one eye is sufficient to estimate the driver’s gaze.
One such instance is portrayed in Fig. 11(a), where the driver’s
gaze is leftward. In Fig. 11, each of the four collages is made
up of three images, i.e., at the bottom is the raw image, and
at the top left and the top right are the cropped images of the
deidentification with one eye and two eyes, respectively. On
the other hand, sometimes, even the raw image is insufficient
for gaze estimation because of the lack of temporal context.
For example, in Fig. 11(b), it is hard to strongly support the
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Fig. 11. Illustration of multiple instances in which a typical confusion between the gaze zones could occur. Each collage of the images is composed of three
images, i.e., at the bottom is the raw image, and at the top left and the top right are the cropped images of the deidentification with one eye and two eyes,
respectively. Each collage illustrates when (a) deidentification with one eye is sufficient, (b) raw image does not contain sufficient information, (c) deidentification
with two eyes provides sufficient context, and (d) deidentification with two eyes introduces more uncertainty than that with one eye.

Fig. 12. Three-gaze-zone performance of deidentified images with (a) one eye
and (b) two eyes. Gaze zones are depicted in Fig. 6. The accuracy for the Right
gaze zone significantly goes up when the Rear Mirror gaze zone is considered
part of the Right gaze zone. The average accuracy for one eye is 0.79 and that
for two eyes is 0.88.

Front gaze or the Inside gaze without more reference to what
happened before and, possibly, after this instant. A more ex-
pected result is when more visual cues (e.g., two eyes over one
eye) lead to the correct gaze estimation. Fig. 11(c) is such an
instance in which the participants found difficulty in inferring
the gaze with one eye but had no problem estimating the gaze
with two eyes. Surprisingly, however, there are instances in
which participants more often misclassified with two eyes than
with one eye. One of these instances is portrayed in Fig. 11(d),
where the ground truth gaze is the Rear Mirror gaze. One
possible reason is that more information on the gaze introduces
alternative possibilities.

Finally, due to the inherent confusions in some zones, we
consider a simpler allocation of gaze zones, as illustrated in
Fig. 6(a), i.e., Left, Front, and Right. One of the main differ-
ences is the absorption of Rear Mirror into the Right gaze zone.
The second is the removal of the Inside gaze zone from the
list because looking inside at the gauge is similar to looking
front, whereas looking at the center console is similar to looking
right. Fig. 12 shows the confusion matrix for a three-gaze-zone
classification. The overall accuracy is higher for both forms of

deidentification since there is less ambiguity between regions.
As expected, an average accuracy of 88% for the deidentified
images with two eyes is higher than 79% for the deidentification
with one eye when considering a simple allocation of gaze
zones.

Estimating the gaze of the driver, in this user study, has
been proven to be particularly difficult because the participants
viewed an image out of context. Fig. 13 shows the sequences
of deidentified images with their respective raw images from
a video sequence of the driver glancing at the rearview mirror.
The red box indicates the actual act of looking at the rearview
mirror, which is typically the image presented to a participant
in our study. By providing the sequence leading up to the
event and possibly the following sequence, the participants are
provided with more context and can thus make a more informed
decision.

V. CONCLUDING REMARKS

In the design of a driver assistance system, when looking at
the driver, the driver’s identity is irrelevant to understanding
and predicting driver behavior. We explored a deidentification
scheme that preserves the facial region around the eyes in the
foreground and obscures everything else in the background. We
particularly focused on eyes because it can provide finer detail
on gaze-zone estimation. A user study using human participants
showed face recognition to be well below chance and the gaze
estimation accuracy for the five gaze zones to be 65% and
71% with one eye and two eyes, respectively. Gaze zones were
misclassified mostly due to the lack of spatiotemporal context.

Our ongoing research is focused on preserving different
combinations of facial regions, testing different background-
obscuring algorithms for the spatial context, and providing a
sequence of images representing the act of looking at a gaze
zone for the temporal context [38], [39]. The latter is of special
interest because knowing the history of a driver’s gaze is useful
in robustly predicting the current gaze of the driver [40].
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Fig. 13. Sequence of deidentified images with their respective raw images from a video sequence of the driver glancing at the rearview mirror. The red box
indicates an instance when the driver’s gaze is on the rearview mirror. The gaze estimation of the deidentified images in this instance can be more accurate when
provided the sequence leading up to it and that possibly following it.
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