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Abstract— Traffic light recognition (TLR) is an integral part
of any intelligent vehicle, which must function in the existing
infrastructure. Pedestrian and sign detection have recently seen
great improvements due to the introduction of learning based
detectors using integral channel features. A similar push have
not yet been seen for the detection sub-problem of TLR, where
detection is dominated by methods based on heuristic models.

Evaluation of existing systems is currently limited primarily
to small local datasets. In order to provide a common basis for
comparing future TLR research an extensive public database
is collected based on footage from US roads. The database
consists of both test and training data, totaling 46,418 frames
and 112,971 annotated traffic lights, captured in continuous
sequences under a varying light and weather conditions.

The learning based detector achieves an AUC of 0.4 and 0.32
for day sequence 1 and 2, respectively, which is more than an
order of magnitude better than the two heuristic model-based
detectors.

I. INTRODUCTION

Recognition of traffic lights (TLs) is an integral part of

Driver Assistance Systems (DAS) in the transitional period

between manually controlled cars and a fully autonomous

network of cars. Currently the focus of research in computer

vision systems for vehicles is divided in two. Major industrial

research groups, such as Daimlar and Google, are invest-

ing heavily in autonomous vehicles and attempt to make

computer vision based system for the existing infrastructure.

Other research done by academic institutions, such as the

LISA lab at UC San Diego and LaRA at ParisTech, are

targeting DAS, which is already available to consumers in

some high-end models. Existing commercial DAS capabil-

ities include, warning of impending collisions, emergency

breaking, automatic lane changing, keeping the advertised

speed limit, and adaptive cruise control. For all parts of DAS

the urban environment posses a lot of challenges, especially

to the systems that rely on computer vision. One of the most

important challenge here is detecting and recognizing TLs at

intersections. Ideally, the TLs should be able to communicate

both visually and using radio communication. However,

this requires investments in infrastructure, something that is

usually not a high priority.

When some form of computer controlled automation

is involved with dangerous objects such as cars, safety

and reliability is of utmost importance. The worst case

scenarios would be a false positive from e.g. a tail light
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resulting in the assistance system determining that a red

light is imminent when it is not the case and unnecessarily

distracting the driver, or worse affecting the driver to

perform an emergency braking operation. Most current

research is focused on detection and recognition during

day time with plenty of light, which makes it much easier

to reject false positives, from e.g. tail lights, street lights

and various reflections. An exception is a system proposed

by Google in [1], where a prior map of the location of

TLs makes it possible for their system to achieve solid

performance even at night. The same system is able to

reduce the number of false positives substantially when it

knows where the traffic signal should, and should not be.

Inspiration for further improvements can be found by look-

ing at research done on similar computer vision problems.

For sign recognition [2], [3] explain how the focus has shifted

from heuristic model-based detection to learning based ap-

proaches and the problem is considered solved on a subset of

signs. The same is the case with pedestrian detection, where

[4] shows how a learning based detectors based on Integral

Channel Features (ICF) or the even faster and slightly better

Aggregated Channel Features (ACF) outperform the other

approaches. While research on sign and pedestrian detection

has mostly moved on, the same is not the case for TL

detection where the majority rely on some sort of color

and/or shape filter for detection.

Research related to pedestrian and traffic signs have

benefited greatly from high amount of public datasets

made available through various benchmarks, such as the

KITTI Vision Benchmark Suite[5] and VIVA Challenge [6].

Currently only one public TL dataset is available, which is

the dataset published by LaRA at ParisTech. The dataset

consist of 11,179 frames from a 8min and 49sec long

drive in Paris. In order to provide a common basis for

comparing future TLR research an extensive public database

is collected based on footage from US roads captured under

varying light and weather conditions. Each test sequence

consists of a continuous drive in an urban environment

providing lots of frames with and without TLs.

The purpose of this paper is to compare two heuristic

TL detection methods to a state-of-the-art learning based

detector relying on ACF. Learning based detectors relying

on Haar features have been applied in earlier research [7],

[8], [9], without much success. This is therefore the first

successful learning based detector applied to the TL detec-
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tion problem. Evaluation and comparison between the three

approaches is done on daytime sequences from the extensive

and difficult LISA Traffic Light Database. The contributions

are thus threefold:

1) First successful application of a state-of-the-art learn-

ing based detector for TL detection.

2) Comparison between two heuristic TL detection ap-

proaches and a learning based detector using ACF.

3) Introduce the first evaluation based on the public LISA

Traffic Light Database.

The paper is organized as follows: Relevant research is

summarized in section II. In section III we present the

proposed methods, followed by evaluation of the TL detec-

tors in section IV. Finally, section V rounds of with some

concluding remarks.

II. RELATED WORK

Recent work published in the area of traffic light recog-

nition is reviewed, before developing a traffic recognition

system to be used for DAS. For a more extensive overview

of the TLR domain, we refer to [10].

A. Traffic Light Recognition

Common for [11], [9], [12] is a TL detector which relies

purely on intensity from grayscale images. This has the

advantage of being more robust to color distortion. Areas

brighter than their surroundings are segmented using the

white top-hat mophology operation, which leads to an initial

high number of candidates. False candidates are filtered

out based on shape information. Specifically, rejection is

done based on criteria such as, dimension ratio, the BLOB

being free of holes and approximately convex. Furthermore,

the areas of BLOBs are compared to the areas of regions

grown from extrema in the original grayscale image. This is

especially effective for removing false candidates big bright

areas such as the sky. This detector relies heavily on a

competent classifier for further rejection and state estimation,

since the number of false candidates is very high and color

information is not available. The detector manages to find

90% of all TLs in the testset.

[13] begins by detecting the vanishing line and thereby

reducing the search area considerably, relying on the as-

sumption that TLs will only appear above this line. They

then apply the the white top-hat operation as [11], [9],

[12] did, on the intensity channel V from a HSV image.

What is left is filter based on statistical measurements of

the hue and saturation ranges of red and green lights. All

pixels outside these ranges are rejected while the remaining

pixels are selected as candidates. Remaining BLOBs are

filtered based on size and height-width ratio. They then

look for black bounding boxes around the BLOBs based on

gradient information and the blackness of the inside of box

candidates. Their system reaches an accuracy of 85%.

[14] extracts candidate BLOBs from RGB images by

applying a color distance transform proposed in [15]. The

transform emphasizes the chosen color in an intensity im-

age, which is thresholded to remove to suppressed colors.

This is followed by shape filtering to reduce noise using

width/height ratio and the solidity of BLOBs. The solidity

is calculated based on the ratio between the area of the

BLOB and it’s bounding box. When evaluating their system,

they count a success if the TL was detected just once in

the sequence, this allows them to reach a detection rate of

93,53%.

III. METHODS

In this section all of the methods which are used in the

proposed system are presented. The section is divided into

two subsection. In the first subsection the learning based

detector is described. The second subsection explains the

tracking used for improving the output of the detector.

A. Learning based detection

In this subsection we apply the successful ACF detector

to the TL detection problem. The learning based detection

is similar to the approach seen in [16] for traffic signs. We

use the Matlab toolbox provided by [17]. The learning based

detection system is described in the following three parts:

1) Features: The learning based detector is based on

features from 10 channels as described in [18]. A channel

refers to a representation of the input image. The 10 different

channels include 6 gradient histogram channels, 1 for unori-

ented gradient magnitude, and 3 for the channels in the CIE-

LUV color space. In each channel, small rectangular blocks

are used as features. These features are evaluated using a

modified AdaBoost classifier with depth-2 decision trees as

weak learners.

2) Training: Training is done using 14,106 positive TL

samples with a resolution of 20x40 and 42,125 negative

samples from 200 carefully selected frames without TLs.

In Figure 1 four examples of the positives used for the

learning based detector are seen. Similarly, Figure 2 shows

two examples of frames used for negatives.

(a) (b) (c) (d)

Fig. 1: Positive samples for learning based detector.

The classifier is trained with Adaboost based on the

features extracted from the positive samples. We train 4

cascade stages, 1st stage consists of 10 weak learners, 2nd

stages of 100, 3rd stage of 1000, and 4th stage of 20000.

In the 4th stage, the training algorithm convergent at 3136

weak learners.

3) Detection: We use a 20x40 sliding window across an

integral image of each of the 10 channels in the test image.
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(a) (b)

Fig. 2: Negative samples for learning based detector.

B. Heuristic model based detection

We want to compare the learning based detector to more

conventional detectors based on heuristic models. The first

approach is based on back projection of trained color his-

tograms of the three TL colors. The second approach is

purely relying on intensity information for spotlight detec-

tion.

1) Detection by Back Projection: Back projection begins

with the generation of color distribution histograms. These

histograms are created from 10 specifically selected training

samples for each color, green, yellow, and red. Based on the

U and V channels of the LUV color space a 2D histogram

is created for each of the colors. The histograms are min-

max normalized before they are used for back projection.

The resulting back projection is thresholded to remove low

probability pixels. TLs are found using BLOB analysis, and

size, shape information is used to generate confidence scores

for each BLOB. The specific metrics are listed here:

• Ratio between width and height of bounding box

• Mean value inside bounding box in the back projection

image

• Mean value inside bounding box in the intensity image

• Ratio between area of floodfilled BLOB and area of

bounding box

2) Detection by Spotlight Detection: Spotlights are found

in the intensity channel L from the LUV colorspace using the

white top-hat morphology operation. This method has been

used in a significant fraction of recent TLR papers [11], [9],

[12], [13], [19]. The found spotlight are scored based on the

listed metrics.

• Ratio between width and height of bounding box

• Ratio between the convex area of BLOB and area of

bounding box

• Ratio between area of floodfilled BLOB and area of

bounding box

IV. EVALUATION

The systems are evaluated based upon the following five

criteria:

• True positives are defined according to the PASCAL

overlap criterion.

• Precision, as seen in equation (1)

• Recall, as seen in equation (2)

• Area-under-curve on Precision-Recall curves

Precision =
TP

TP + FP
(1)

Precision is the ratio of correct TL detections compared

to the actual number of TLs.

Recall =
TP

TP + FN
(2)

Recall is the ratio of correct TL detections compared to the

total number of detections.

For presenting and evaluating the overall system perfor-

mance, we use a precision-recall curve and using the area-

under-curve (AUC) as measure. A high AUC indicates good

performance, an AUC of 100% indicates a perfect system

for the testset.

All systems are evaluated on the two test day sequences

from the LISA Traffic Light Database1. This provides a

total of frame number of 14,386, and a total ground truth

of 21,421 annotated TLs. Additional information of the

video sequences can be found in Table I. The resolution

of the LISA Traffic Light Database is 1280x960. Only the

upper 1280x580 part of the frames are used, which results

in a system evaluation time of an average 1.275 seconds

per frame. We present the results according to the orignial

PASCAL overlap criteria of 50 % in Figure 3 and 4.

Fig. 3: Precision-Recall curve of day sequence 1 using 50 %

overlap criteria.

Fig. 4: Precision-Recall curve of day sequence 2 using 50 %

overlap criteria.

By examining figure 3 and 4, it is clear that the learning

based detector far outperforms the other detectors in both

precision and recall when evaluated on both day sequences.

During evaluation especially the spotlight detector would

1Freely available at http://cvrr.ucsd.edu/LISA/datasets.
html for educational, research, and non-profit purposes.

IEEE 18th International Conference on Intelligent Transportation Systems, 2015 - To Appear

http://cvrr.ucsd.edu/LISA/datasets.html
http://cvrr.ucsd.edu/LISA/datasets.html


TABLE I: Overview of the daytime test sequences in LISA Traffic Light Database.

Sequence name Description # Frames # Annotations # TLs Length

Day sequence 1 morning, urban 4,800 10,267 25 5.00 min

Day sequence 2 evening, urban 9,586 11,154 29 6.10 min

14,386 21,421 54 11.1 min

miss a lot of otherwise correct detection because of the

harsh overlap criteria. The primary reason for this being

the inaccuracy in estimating the TL box from the detected

spotlights.

To show the impact of these inaccuracies, the system is

also validated using a more gentle overlap criterion of 25 %.

The results from are presented in Figure 5 and 6.

Fig. 5: Precision-Recall curve of day sequence 1 using 25 %

overlap criteria.

Fig. 6: Precision-Recall curve of day sequence 2 using 25 %

overlap criteria.

Easing of the overlap criterion shows significantly im-

proved AUC for all the detectors. It is therefore apparent

that improvements in determining location and scale is

necessary. From Figures 3, 4, 5, and 6 it seems that the

confidence metrics defined in subsection III-B for the model-

based detectors are bad at discriminating between TLs and

non TL spotlights. It is apparent that for especially the

spotlight detector false candidates obtain a better score than

actual TLs. The learning based approach is trained towards

detecting the entire TL rather than only the TL spot, which

gives it an advantage compared to the two model based which

are optimized towards the TL spot.

In Figure 7 two detection images from the learning based

system is seen. The green bounding box is the positive

detected TLs, and the red bounding box is false positives.

The true positive detected TLs have a score around 400, and

the false positives have a score around 200 making it easy

to discard them.

(a)

(b)

Fig. 7: Detections by the learning based detector.

V. CONCLUDING REMARKS

We have compared a learning based detector based on ag-

gregated channel features to two detectors based on heuristic

models. The learning based detector reached the best AUC,

because of the significantly higher precision and recall. For

detectors recall is usually the most important parameter, since

many of the false positives can be removed in later stages,

whereas false negatives are lost for good. The learning based

detector achieves an AUC of 0.4 and 0.32 for day sequence 1

and 2, respectively. This is more than an order of magnitude

better than the two heuristic model-based detectors.

On top of the detectors we would like to implement

tracking to reduce the number of false positives and false

negatives. Stereo vision could be used to filter out false

positives by looking at the detected TL candidates’ height

above the road surface as well as their size and shape. 3D

information can also be used to improve tracking precision.
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