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Abstract

Research in traffic light recognition (TLR) has stagnated

compared to related computer vision areas, such as pedes-

trian detection and and traffic sign recognition. We focus on

the detection sub-problem, since this is the most challenging

problem and solving this is the key to a successful TLR sys-

tem. This is done by looking at four detectors from different

author groups and their reported results. From surveying

existing work it is clear that currently evaluation is limited

primarily to small local datasets. In order to provide a com-

mon basis for future comparison of TLR research an exten-

sive public database is collected based on footage from US

roads. The database consists of continuous test and training

video sequences, totaling 46,418 frames and 112,971 anno-

tated traffic lights. The sequences are captured by a stereo

camera mounted on the roof of a vehicle driving under both

night and day conditions with varying light and weather.

1. Introduction

Driver assistance systems are gaining a lot of momen-

tum currently, as evident in top models from prominent car

manufacturers. Recognition of traffic lights (TLs) would be

a desirable addition, but judging by the state of current re-

search in this area, consumer-ready systems are not on the

immediate horizon. Traffic light recognition (TLR) consists

of three sub-problems, detection, classification, and track-

ing. Figure 1 illustrates the typical flow of such a computer

vision system. A similar breakdown is done for traffic sign

recognition in [13].

The detection and classification stages are executed se-

quentially on each frame, whereas the tracking stage feeds

back spatial and temporal information between frames. For

Figure 1: Breakdown of a vision based TLR system.

TLR both the detection and classification stages are com-

parable to the equivalent stages in traffic sign recognition.

Tracking of TLs differs, since signs are static and TLs

change states. More about the coventions, structure and dy-

namics of TLs in section 2. The detection problem covers

locating desired candidate TLs. Candidates are either re-

jected or accepted in the classification stage based on fea-

tures extracted from the detected candidates. Furthermore,

the state of accepted candidates is determined. In tracking

the location and state of TLs are tracked through a frame se-

quence. Since detection of TL candidates is the foundation

for a successful classification and tracking we will focus

exclusively on this for the remainder of this paper. Unlike

for sign recognition and pedestrian detection, no surveys of

TLR research exist.

The purpose of this paper is to highlight some promi-

nent approaches to TL detection from a few recent papers,

as well as describe a common procedure for evaluation of

such detectors. Most current research is evaluated based on

local datasets with a limited number of TLs and little varia-

tion. This makes comparison between existing methods and

new contributions difficult. We introduce a comprehensive

TL dataset along with a proposal for a common evaluation

procedure for TL detectors. The KITTI Vision Benchmark

Suite [10] is an example of a dataset and benchmark used

for evaluating various vision applications, such as stereo,
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object detection, and visual odometry, with the purpose of

reducing the bias and providing real-world test scenarios.

The purpose is similar for the recently introduced VIVA

Challenge, which is used for benchmarking proposed meth-

ods on difficult tasks associated with drivers, occupants, ve-

hicle dynamics, and vehicle surroundings. For now, it in-

cludes datasets for hands, faces, and signs captured under

challenging naturalistic drive settings. The TL dataset pub-

lished with this work is eventually going to be included in

the VIVA Challenge[12].

The contributions made in this survey paper are thus

threefold:

1. Provide an overview of four different approaches to TL

detection from four author groups.

2. Introduce a common evaluation procedure for TL de-

tectors.

3. Publish an extensive high resolution, stereo video

database, with day and night video sequences, accom-

panied by TL annotations.

The paper is organized as follows: Section 2, explains

the possible appearances of TLs, along with common chal-

lenges that TL detection systems are subject to. Related re-

search is summarized in section 3. In section 4, we present

a new database for evaluation of TL detection systems. Fi-

nally, concluding remarks are found in section 6.

2. Traffic Lights: Structure and Challenges

TLs are by design made to stand out and be easily vis-

ible. Their primary components are bright colored lamps.

These lamps are commonly circular or arrow shaped, they

are surrounded by a uniform, often dark box. The purpose

of TLs is the same across the world, they must safely regu-

late the traffic flow, by informing drivers about the the right

of way. Right of way is given in a manner which minimize

conflicts between vehicles and pedestrians traveling incom-

patible paths through the intersection during the same time

span. The most common TL configuration is the basic red-

yellow-green signal, where each state indicates whether a

driver should stop, be prepared to stop, or keep driving.

Worldwide there are many variations in TL designs; how-

ever, all follow a few general guidelines. A TL consists of

a box that holds differently colored, and sometimes differ-

ently shaped lamps. The orientation, color, size, and shape

of the box will vary country to country and even city to

city. In the U.S. TLs are regulated by the Federal Highway

Administration in the Manual on Uniform Traffic Control

Devices [8] and most European countries have signed the

Vienna Convention on Road Signs and Signals [18], requir-

ing TLs to meet a common international standard.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure 2: (a) Examples of TLs from the collected dataset.

2.1. Challenges in recognizing traffic lights

Although TLs are made to be easily recognizable, in-

fluences from the environment and sometimes sub-optimal

placement can make successful detection difficult, if not im-

possible. Issues include:

• Color tone shifting and halo disturbances because of

influences from the atmosphere and glass that the light

passes through[3]. Fig. 2(c).

• Occlusion and partial occlusion because of other ob-
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jects or oblique viewing angles[3]. This is especially a

problem with supported TLs [9, 5, 2]. Fig. 2(e),(f),(g).

• Incomplete shapes because of malfunctioning lights[3]

or dirty lamps 2. Fig. 2(a),(b).

• False positives from, brake lights, reflections,

billboards[7, 11], and pedestrian crossing lamps. Fig.

2(h).

• Changes in lighting due to adverse weather conditions

and the positioning of the sun and other light sources.

Fig. 2(d),(k),(l).

• Mismatch between camera’s shutter speed and TL

LED’s duty cycle. Fig. 2(i),(j).

Inconsistencies in TL lamps can be caused by dirt, defects,

or the relatively slow duty cycle of the LEDs. The duty cy-

cle is high enough for the human eye not to notice that the

lights are actually blinking. Issues arise when a camera uses

fast shutter speeds, leading to some frames not contain a lit

TL lamp. Saturation is another aspect that can influence

the appearance of the lights. When transitioning between

day and night, the camera parameters must be adjusted to

let the optimal amount of light in and avoid under or over-

saturation. [6] introduces an adaptive camera setting sys-

tem, that change the shutter and gain settings based upon

the luminosity of the pixels in the upper part of the frame.

3. Related Work

The four approaches which are examined and compared

are selected based on being recent and by representing a

niche in current TL detection.

The first approach of interest is found in [17, 2, 5] which

share the same TL detector. The detector is first presented

in [5] and it relies purely on intensity from grayscale im-

ages. This has the advantage of being more robust to

color distortion. Areas brighter than their surroundings are

segmented using the white top-hat morphology operation,

which leads to an initial high number of false candidates.

False candidates are filtered out based on the shape infor-

mation. Specifically, rejection is done based on criteria

such as, dimensional ratio, the BLOB being hole free and

approximately convex. Furthermore, the areas of BLOBs

are compared to the areas of regions grown from extrema

in the original grayscale image. This is especially effective

for removing false candidates found in bright uniform areas

such as the sky. This detector relies heavily on a competent

classifier for further rejection and state estimation, since the

number of false candidates is very high and color informa-

tion is not available. The detector reaches a detection rate

of more than 90%. The detection rate is described as the

ratio between correct TL recognitions and the ground truth

in a given video sequence

[19] begins by detecting the vanishing line and thereby

reducing the search area considerably, relying on the as-

sumption that TLs will only appear above this line. They

then apply the white top-hat operation, similarly to [17, 2,

5]. This is done on the intensity channel V from the HSV

color space. The top-hat operation yields a greyscale like-

lihood map which is thresholded to create a binary candi-

date map. Remaining candidates are filtered based on sta-

tistical measurements of the hue and saturation ranges of

red and green lights. All pixels outside these ranges are

rejected while the remaining pixels are selected as candi-

dates. Candidate BLOBs assigned scores based on size

and height-width ratio. They then look for black bound-

ing boxes around the BLOBs based on gradient information

and the blackness of the inside of box candidates. These

metrics are also translated into a score and combined with

the BLOB score. Finally, candidates are confirmed if their

scores are high. Their system reaches an accuracy of 85%.

The accuracy is the overall recognition rate taking true posi-

tives, false negatives, and false positives into consideration.

[11] extracts candidate BLOBs from RGB images by ap-

plying a color distance transform proposed in [15]. The

transform emphasizes the chosen color in an intensity im-

age, which is thresholded to remove to suppressed colors.

This is followed by shape filtering to reduce noise using

width/height ratio and the solidity of BLOBs. The solid-

ity is calculated based on the ratio between the area of the

BLOB and it’s bounding box. When evaluating their sys-

tem, they count a success if the TL was detected just once

in the sequence, this allows them to reach a detection rate

of 93%.

An easy way of improving the segmentation is to reduce

the search area. A popular and simplistic approach is to

limit the search to the upper half of the input image. A so-

phisticated and precise approach is seen in [7], where an

off-line database containing prior knowledge of TL loca-

tions is used. The off-line database is created using the in-

put image combined with accurate GPS measurements, and

then manually hand-labeling of the areas with TLs on a pre-

captured image sequences. Given that the route which the

TLR system is used upon is hand-labeled, such an off-line

database can reduce the searching window and the detection

problem significantly. However, collecting and maintaining

such a database is very time-consuming. Besides the use of

prior knowledge, [7] uses color and shape information for

final localization of candidates. With the use of their prior

map their approach reach a precision of 99% and a recall of

62%.

Table 1 provides an overview of the four mentioned TL

detectors along their reported performance measurements.

Note that detector performance is reported using different

measures and on vastly different data sets, making compar-

ison difficult.
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Table 1: Overview of recent studies in TLR. GT is an abbreviation of ground truth

Paper Year Color

Space(s)

Segmentation Filtering Dataset(GT TLs) Conditions Results

[17,

2, 5]

2009

2009

2014

Grayscale Top-hat spot light detection BLOB filter, shape,

structure

10,339 (ParisTech) Urban day 90% Detection rate

[19] 2014 HSV Top-hat spot light detection BLOB filter, color,

shape, structure

3,767 Good, challenging,

very challenging

85% Accuracy

[11] 2013 RGB Color thresholding BLOB filter, shape 12,703 Night 93% Detection rate

[7] 2011 - Prior knowledge of TL location BLOB filter, color

and shape

1,383 Morning, afternoon,

night

99% Precision, 62% Recall

4. LISA Traffic Light Database

As it was concluded in the traffic sign survey paper

[13], the general approach for testing and validating a pro-

posed method is to use a privately collected dataset. This is

considered sufficient for preliminary testing and validation.

But, when trying to estimate the performance of a contribu-

tion, it becomes difficult to compare the work with others’.

The only currently public dataset is provided by Robotics

Centre of Mines ParisTech in France. The dataset consists

of 11,179 frames from a single 8m 49s long video. It con-

tains 9,168 hand-labeled instances of TLs. More informa-

tion about this dataset can be found in Table 2.

A public database for computer vision should support

the three part stereo vision bottom-up paradigm described

in [16]. [16] provides an overview of vehicle detection

systems based on both monocular and stereo vision since

2005. Both monocular and stereo vision are widely used

for solving this problem, but an interesting finding in this

work is the stereo vision bottom-up paradigm which consist

of visual odometry, feature points in 3D, and distinguishing

static from moving points, which is also mentioned in [4].

The motivation for having a public TL database with stereo

images is therefore that all three parts in this paradigm

can help reduce the amount of false positives. This notion

is reinforced in [1] where the main technical challenges

in urban environments are occlusions, shadow silhouettes,

and dense traffic. The introduction of stereo has shown

promising result in relation to solving these challenges.

The database that is collected and released together with

this paper is focused on TLR and contains TLs that are

found in San Diego, USA. Even though it was collected

with TLR in mind, it could also become useful for evalu-

ation of other related computer vision challenges, since it

contains numerous traffic signs, vehicles, pedestrians, etc.

The stereo image pairs are acquired using the Point Grey’s

three lens CCD camera, Bumblebee XB3 (BBX3-13S2C-

60) with a resolution of 1280 x 960, each lens has a hori-

zontal Field of View(FoV) of 43◦and a focal length of 6mm.

The stereo camera supports two different baselines, 12 and

24 cm, whereof a baseline of 24 cm is used for the LISA TL

database. The stereo images are uncompressed and rectified

on the fly, and captured with a frame rate of 16 FPS. Cap-

turing was done by mounting the stereo camera centrally

up front on the capturing vehicle’s roof. The database pro-

vides two day and two nighttime sequences for testing and

18 shorter video sequences intended for training and addi-

tional testing. They are organized as seen in Table 3, which

gives a detailed overview of all the video sequences that are

made available with this paper. The number of annotations

is the accumulated number of hand-labeled TLs on a frame-

by-frame bases. The number of TLs is the physical number

of TLs in the physical world. Camera gain and shutter speed

were manually set to avoid oversaturation as well as to min-

imize flickering from the TLs. For all day clips, a shutter

speed of 1/5000s and 0 gain was used. For all night clips, a

shutter speed of 1/16s and 8 gain was used. A Triclops cal-

ibration file is provided along with the stereo images. This

file contains the factory calibration for the used Bumblebee

XB3 camera, which can be used with Point Grey’s Triclops

SDK.

Each sequence in the database comes with 2 hand la-

beled annotations for the left stereo frame. The annota-

tions for a given video sequence contains the following in-

formation: frame number, rectangular area around the lit

TL lamp or TL box, and the state of that area. Labeling

is done for every visibly lit TL lamp. An example of an-

notated TLs is seen in Figure 3. The purple annotations

are available which only mark the lit TL lamp. The green

annotations cover most of the TL box and are meant for

detectors that aim at detecting the entire box. The LISA

Figure 3: Example of annotated TLs.

Traffic Light Database is made freely available at http:
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Table 2: Overview of current public TL databases. Ambiguous means that it could not be decided whether the light was a TL

during annotation, these are ignored when evaluating.

Robotics Centre of Mines ParisTech[14] LISA (Laboratory for Intelligent and Safe Automobiles) Traffic Light Database

#Classes 4 (green, orange, red & ambiguous) 7 (go, go forward, go left, warning, warning left, stop, & stop left)

#Frames / #Annotations 11,179 / 9,168 46,418 / 112,971

Image spec. 640 x 480, 8-bit, RGB Stereo, 1280 x 960, 8-bit, RGB

Place of origin Paris, France San Diego, USA

Video included Yes, 8min 49s @25FPS Yes, 44min 24s @16FPS

Description 1 urban day time sequence 4 test sequences ≥ 5min and 18 clips ≤ 2min 49s, morning, evening, night

Table 3: Overview of the video sequences in LISA Traffic Light Database.

Sequence name Description # Frames # Annotations # TLs Length Classes

Day seq. 1 morning, urban, backlight 4,800 10,267 25 5min Go, warning, warning left, stop, stop left

Day seq. 2 evening, urban 9,586 11,154 29 6min 10s Go, go forward, go left, warning, stop, stop left

Night seq. 1 night, urban 4,992 18,889 25 5min 11s Go, go left, warning, stop, stop left

Night seq. 2 night, urban 6,533 23,776 54 6min 48s Go, go left, warning, stop, stop left

Day clip 1 evening, urban, lens flare 2,161 6,474 10 2min 15s Go, stop

Day clip 2 evening, urban 1,031 2,230 6 1min 4s Go, go left, warning left, stop, stop left

Day clip 3 evening, urban 643 1,087 3 40s Go, warning, stop

Day clip 4 evening, urban 397 859 8 24s Go

Day clip 5 morning, urban 2,667 9,717 8 2min 46s Go, go left, warning, warning left, stop, stop left

Day clip 6 morning, urban 468 1,215 4 29s Go, stop, stop left

Day clip 7 morning, urban 2,718 8,189 10 2min 49s Go, go left, warning, warning left, stop, stop left

Day clip 8 morning, urban 1,040 2,025 8 1min 4s Go, go left, stop, stop left

Day clip 9 morning, urban 960 1,264 4 59s Go, go left, warning left, stop, stop left

Day clip 10 morning, urban 48 109 4 3s Go, stop

Day clip 11 morning, urban 1,052 1,268 6 1min 5s Go, stop

Day clip 12 morning, urban 152 229 3 9s Go

Day clip 13 evening, urban 693 873 8 43s Go, warning, stop

Night clip 1 night, urban 591 1,885 8 36s Go

Night clip 2 night, urban 2,299 4,205 25 2min 24s Go, go left, warning, stop, stop left

Night clip 3 night, urban 1,051 1,476 14 1min 6s Go, go left, warning left, stop, stop left

Night clip 4 night, urban 1,104 2,538 9 1min 9s Go, warning, stop

Night clip 5 night, urban 1,453 3,242 19 1min 31s Go, go left, warning, stop, stop left

46,418 112,971 290 44min 24s

//cvrr.ucsd.edu/LISA/datasets.html for ed-

ucational, research, and non-profit purposes.

5. Evaluation

A wide variety of approaches and metrics have been used

to evaluate detector performance. A standardized method-

ology would make comparison more straightforward. For

evaluations on the LISA Traffic Light database we suggest

using: precision and recall, which are defined in equation

(1) and (2). TP, FP, and FN are abbreviations for true posi-

tives, false positives and false negatives. The TPs, FPs and

FNs should be evaluated on a per frame basis.

Precision =
TP

TP + FP
(1)

Precision is the ratio of correct TL detections to the total

number of detections made by the detector.

Recall =
TP

TP + FN
(2)

Recall is the ratio of correct TL detections to the actual

number of TLs.

For presenting and evaluating the overall system perfor-

mance, we suggest generating a precision-recall curve and

using the area-under-curve (AUC) as performance measure.

A high AUC indicates good performance, an AUC of 100%

indicates a perfect system performance for the testset. An

example of a precision-recall curve is seen in Figure 4.

The Pascal overlap criterion defined in equation (3) is

used to determine TPs:

a0 =
area(Bd ∩Bgt)

area(Bd ∪Bgt)
≥ 0.5 (3)

a0 denotes the overlap ratio between the detected bound-
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Figure 4: Example of a precision-recall curve

ing box Bd and the ground truth bounding box Bgt. (Bd ∩

Bgt) denotes the intersection of the detected and ground

truth bounding boxes, and (Bd ∪Bgt) denotes their union.

We propose that future DAS focused TLR systems are

evaluated on a frame-by-frame basis. Furthermore, a pro-

posed system’s accuracy should be calculated using AUC

for a PR curve. The proposed evaluation terms are listed

below:

• True positives are defined according to equation (3).

• Precision, as seen in equation (1).

• Recall, as seen in equation (2).

• Area-under-curve for Precision-Recall curves.

6. Concluding Remarks

We have presented an overview of four state of the art

approaches to traffic light detection, which have been pub-

lished in recent papers on traffic light recognition (TLR).

None of the examined TL detection approaches rely on ma-

chine learning. This raises the question of whether learning

based approaches would be able to outperform these heuris-

tic model based detectors on a challenging dataset such as

the one presented in this paper. Because the systems are

evaluated using different methodology and on very differ-

ent datasets it is not clear which approach is the best. The

approach proposed in [7] has the major advantage of using

prior maps, which significantly ease the detection problem.

Only one public database with traffic lights (TLs) is cur-

rently available and it is not widely used. We therefore con-

tribute with the LISA Traffic Light Database, which con-

tains TLs captured using a stereo camera on roads in San

Diego, USA under varying conditions. The database is sup-

posed to enable comparable evaluation on a large and var-

ied dataset, and provides the possibility of including stereo

vision for improving TLR. Along with the dataset we pro-

pose a standardized method for evaluating TLR systems,

which should enable easy comparison between future de-

tectors. The dataset will eventually be included in the VIVA

Challenge [12].
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