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Abstract— Behavior analysis of vehicles surrounding the ego-
vehicle is an essential component in safe and pleasant au-
tonomous driving. This study develops a framework for activity
classification of observed on-road vehicles using 3D trajectory
cues and a Long Short Term Memory (LSTM) model. As a case
study, we aim to classify maneuvers of surrounding vehicles at
four way intersections. LIDAR, GPS, and IMU measurements
are used to extract ego-motion compensated surround trajec-
tories from data clips in the KITTI benchmark. The impact
of different prediction label space choices, feature space input,
noisy/missing trajectory data, and LSTM model architectures
are analyzed, presenting the strengths and limitations of the
proposed approach.

I. INTRODUCTION

Driving a vehicle requires interaction with other road
occupants. An intelligent driving system must understand
and predict the actions of its surrounding agents in order
to maneuver in a safe manner [1]. This work aims to
develop a framework for automatic activity classification
of surrounding on-road agents using a Recurrent Neural
Network (RNN) and 3D trajectory cues. Fig. 1 depicts an
example of the type of data and activities studied in this
work. As a case study, we focus on activity classification at
intersections.

Studying the behavior of surrounding vehicles at intersec-
tions is an important issue for autonomous driving and driver
assistance. For example when turning left in an intersection
that does not have a separate left turn signal, the driver
needs to know if the vehicles in the oncoming lane want
to go straight through the intersection (driver waits) or they
are also making a left turn (driver can make the left turn).
Due to the crossing of multiple roads, crashes often occur at
intersections [2]. In 2014, there were 4,441 crashes at four
way intersections with at least 327 fatalities in U.S. [3]. An
activity classification system can recognize dangerous situa-
tions and take precautionary measures to avoid an accident.

A. Contributions

Activity classification framework: Our goal is to build a
robust system that can classify surround vehicle maneuvers.
We propose to use a multi-layer (stacked) LSTM architec-
ture, as behavior analysis and modeling involves reasoning
over the evolution of temporal events in sequences. We find
that increasing the abstraction capability of the model (up to
3 layers) works best for our task.

Evaluation: The capability of the proposed approach to
classify activities and capture different levels of temporal
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Fig. 1. This study develops a framework for classification of surround
vehicles’ trajectories. (a) Vehicle trajectories from a drive in the KITTI [15]
dataset, mapped to the road surface. The ego vehicle path is shown with a
dotted line. (b) A corresponding image of the studied scene, where colored
tags refer to the paths shown in (a)

context is analyzed using a real-world case study at four
way intersections. The annotated intersection activity dataset
is employed to gain insights into the optimal LSTM archi-
tecture (specifically, the number of layers and cells in each
layer), as well as the impact of changing the label space
(e.g. turning or not turning vs. specific types of turns) or
the feature space (e.g. velocity, orientation, etc.). We also
analyze the impact of noisy or missing trajectory data on
classification accuracy of the proposed framework. Such an
experiment studies robustness and generalization capabilities,
necessary for on-road systems.

II. RELATED RESEARCH STUDIES

As stated in [5], a vehicle’s velocity can indicate the
intention of the driver at an intersection. For example a
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driver who does not slow down as she is approaching the
intersection, will probably go straight compared to a driver
who slows down and waits at the side of the intersection.
Efficient modeling of such subtle cues from trajectory data
in on-road settings is the main aim of our study. In [4], pose
and motion parameters, such as the vehicle’s yaw rate, are
used with Kalman filtering for a trajectory prediction task.
This work focuses only on oncoming traffic and detects if the
oncoming vehicle is going straight or turning. On the other
hand, we experiment with a variety of label space choices
for the activity vocabulary.

Some related research studies employ unsupervised extrac-
tion of activities. In [16], a vocabulary of recurrent motion
patterns is generated in a data-driven manner. Consequently,
activities are analyzed using a Hidden Markov Models
(HMM). Although both our study and the study in [16]
employ trajectories for activity classification, [16] focuses
on surveillance-type settings. In [17], traffic activities as
well as scene topology and geometry are inferred using a
probabilistic generative model. While we employ LIDAR
data, [17] employs visual cues from a stereo camera.

Previous approaches for behavior classification and pre-
diction include explicit models of the velocity profile of
vehicles [5], Bayesian networks [6], Monte Carlo Simulation
[7], Hidden Markov Models (HMM) [8], [9], [10], Support
Vector Machines [11] prototype based methods [12], and
Conditional Random Fields [13].

Here we propose a method based on a Long Short Term
Memory [18] network. RNNs, and in particular LSTMs have
recently emerged as powerful temporal data models [14], and
this work discusses employing them for a trajectory classifi-
cation task. In particular, we propose a stacked architecture
and a set of temporal features, and evaluate their performance
on a naturalistic trajectory dataset of KITTI videos [15].

III. ACTIVITY CLASSIFICATION FRAMEWORK

A. Dataset

The KITTI benchmark [15] was used for training and
testing. KITTI dataset has camera images, Velodyne LIDAR
data, and IMU/GPS recordings, as well as annotations of 3D
bounding boxes. From the IMU/GPS data and 3D bound-
ing boxes, the trajectories for visible vehicles were ego-
motion compensated and mapped onto a 2D plane (Fig. 1).
Consequently, the trajectories that involved going through
intersections were manually selected and labeled for training
and evaluation. There are 51 samples from 8 videos covering
2247 frames.

B. Label Space

The annotated labels are explained in Fig. 2. For classifica-
tion, several categorizations were defined. The most specific
categorization had 12 labels (as shown in Fig. 2). Fig. 3)
shows the number of instances in each class. The labels can
be used for more general activity categorizations, produced
by merging together labels in Fig. 2. Throughout the ex-
periments, we refer to the resulting number of enumerated
classes as M . For example in M = 3, the starting point
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Fig. 2. We annotate trajectories using the depicted labels and the paths they
represent. U-turns were excluded because there were very few instances of
them in the dataset. The labels shown are used to study different activity
vocabulary choices when training classification models.
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Fig. 3. The number of instances in each class.

in the intersection can be inferred from the location of the
cars with respect to the road instead of having the classifier
predict that. This leads to simpler classifiers that have the
benefit of having more training data. We study the following
activity label spaces,

• M = 12: all the classes are present.
• M = 8: for each side of intersection, only two classes

for going straight and turning are considered (e.g. UL
and UR are merged).

• M = 3: three global classes for going straight, turning
left and turning right (left and right are respective to
the vehicle’s orientation).

• M = 2: two classes for going straight vs turning.

C. Features

For each time instance, we found it useful to transform
the road-plane position information of the trajectory into the
following types of features. The features are computed after
resampling each trajectory to a fixed length of L = 20.
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Algorithm 1 Extracting Histogram Features
Require: loc . vehicle location in 2D per frame
Require: edges . Edges for the histogram buckets
Require: L . length of the output
Ensure: hist . Histogram features per frame
loc← resample loc to have length L+ 2
for i = 1 to L do

cur ← loc[i+1]-loc[i]
next ← loc[i+2]-loc[i+1]
ang[i] ← clockwise angle between cur and next
euc[i] ← 2-norm of cur
k ← the bucket for ang[i]
h[k] ← h[k] + euc[i]
hist[i] ← h

1) Linear Changes: The original trajectories were resam-
pled to have length L+1. For each location after the first one
(i), the difference between current location and the previous
one was calculated,

lineari = locationi−1 − locationi
2) Angular Changes: For each location after the second

one (i), calculate the vector A that connects locationi−2

to locationi−1 and vector B that connects locationi−1 to
locationi and find the angle between A and B. The angles
are between −π and π and sensitive to the order of A and
B: get angle(A,B) = −get angle(B,A).

A = locationi−2 − locationi−1

B = locationi−1 − locationi
θi = get angle(A,B)

3) Angular Changes Histogram: The same angular
changes from the previous part were used to make his-
tograms per step. Algorithm 1 shows how the histogram
features were extracted. For each angle, instead of adding
1, the corresponding euclidean distance was added because
stationary vehicles have noisy readings. Two sets of buckets
were tested:

1) edges = [−∞,− π
40 ,

π
40 ,∞]

2) edges = [−∞,− π
20 ,−

π
40 ,

π
40 ,

π
20 ,∞]

4) Vehicle Orientation: As KITTI provides bird’s eye
view orientation, the value was also studied as a potential
useful feature in intersection scenarios.

D. Long Short-Term Memory for Intersection Activity Clas-
sification

Recurrent Neural Networks can use contextual tempo-
ral information for mapping input sequences to output se-
quences, but a problem arises when the influence of the
input decays or blows up exponentially during the network’s
recurrent connections [19]. This problem makes it difficult to
discover patterns in long input sequences. LSTM is a form of
RNNs that addresses this problem (also called the problem

CHAPTER 4. LONG SHORT-TERM MEMORY 33

Figure 4.2: LSTM memory block with one cell. The three gates are nonlin-
ear summation units that collect activations from inside and outside the block,
and control the activation of the cell via multiplications (small black circles).
The input and output gates multiply the input and output of the cell while the
forget gate multiplies the cell’s previous state. No activation function is applied
within the cell. The gate activation function ‘f’ is usually the logistic sigmoid,
so that the gate activations are between 0 (gate closed) and 1 (gate open). The
cell input and output activation functions (‘g’ and ‘h’) are usually tanh or lo-
gistic sigmoid, though in some cases ‘h’ is the identity function. The weighted
‘peephole’ connections from the cell to the gates are shown with dashed lines.
All other connections within the block are unweighted (or equivalently, have a
fixed weight of 1.0). The only outputs from the block to the rest of the network
emanate from the output gate multiplication.

Fig. 4. An LSTM memory cell [19], suitable for modeling activities of
surrounding vehicles.

of vanishing gradient) by replacing each node of the network
by a memory cell (Fig. 4). Each memory block has

• memory cell: that remembers and accumulates what the
cell is intended to remember

• forget gate: that decides what proportion of the cell
memory should be kept for the next time step

• input gate: that decides whether the input should be
allowed into the block

• output gate: that decides whether the output of the block
should be sent out.

This architecture allows LSTM blocks to store and retrieve
information for arbitrary length of time. Unlike general
RNNs, in LSTM the back-propagated error doesn’t vanish
exponentially over time and they are easily trainable [20].
Hence, studying the usefulness of such an approach for
the purpose of surround trajectory classification is well
motivated.

The Keras implementation of Long Short Term Memory
for Python using Theano as backend was used for classifica-
tion [21]. To better learn the temporal representations, three
layers of LSTM were stacked on top of each other. The last
layer outputs a vector with the same size as the number of
classes (Fig. 5).

IV. EXPERIMENTAL ANALYSIS

In this section, the impact of varying the prediction label
space, model parameters, and input features is analyzed on
the annotated trajectory dataset. Due to the large variation
in the number of samples in each maneuver type (from 0-
12), a normalized accuracy metric was used. First the percent

2269



LSTM1: input = (N , L, F )

output = (N , L, D)

LSTM2: input = (N , L, D)

output = (N , L, D)

LSTM3: input = (N , L, D)

output = (N , D)

Dense: input = (N , D)

output = (N , M )

Fig. 5. Architecture of the layers in the classifier with S = 3. N =
number of training samples, L = length of features, F = dimension of
features (e.g. F = 2 for linear changes in , F = 3 for linear and angular
changes), M = number of categories, and D = number of cells in each
layer.

accuracy within each class was calculated and then averaged
over all the classes. If one of the classes did not have
any samples, it was not considered for accuracy calculation
(classes UL and DR).

accuracyi =
correct predictions for class i

instances from class i

accuracy =
1

M

M∑
i=1

accuracyi

To make results consistent, the random number generator’s
seed was set to a fixed value before each training.

A. Results

The evaluation results for various categorization methods,
architectures, and features are shown in the tables II, III,
IV, and V. The classifiers with a three layer architecture
(S = 3) had higher accuracy compared to S = 2. However
adding another layer in S = 4 does not seem to improve the
accuracy significantly. Higher values of D (cells per layer)
also give better accuracy but they add computational cost.
D = 128 did not give results that were significantly better
than D = 64, and even D = 32 is shown to produce
comparable results. As the highly accurate 3D bounding
boxes and Velodyne measurements in KITTI may not always
be available (i.e. other sensors) and for studying sensitivity
to noise, a Gaussian noise with standard deviation of 0.1m
was added to the vehicle locations before any processing for
each experiment.

In general, smaller values for M resulted in higher accu-
racy, which is expected as it results in fewer classes, more
data per class, and consequently an easier inference problem.
Some distinctions can not be easily made from the selected
features. For example a UU looks exactly like a DD unless
some information about the ego vehicle, such as its relative

Fig. 6. The green path shows a right turn that was misclassified as going
straight when using histogram features.

location and orientation are given. However these distinctions
may not be necessary, as only the intentions of the vehicle to
turn left/right or to go straight are needed for a system that
knows the initial location and orientation of the vehicles.

The linear changes have the best results for M = 2, 8 and
12. Adding angular changes or orientations does not seem to
increase the accuracies. For M = 3, the histograms seem to
be more accurate, though they have difficulty detecting right
turns because they are often short compared to left turns
and their trajectories are not fully captured. Fig 6 shows
an example of a misclassification. In this case the observed
path started late into the turn, so the extracted features
cannot capture the changes in orientation well enough for
the classifier.

Table VI shows the results for a classifier based on linear
and angular changes with S = 3 and D = 64. As it
was mentioned earlier, since the features do not hold any
information about the ego vehicle location, it is difficult to
classify for the complete 12 classes. Also instances for left
turns get detected almost perfectly, but the right turns are
more difficult to classify using these features. However, the
M = 2 or M = 3 classifiers achieve better performance, of
0.75 and 0.6, respectively.

The best performing settings in terms of accuracy and
performance were:

• M = 2: L = 3, D = 32, feature type = histogram 3.
• M = 3: L = 3, D = 32, feature type = histogram 5.
• M = 8: L = 3, D = 32, feature type = linear changes.
• M = 12: L = 3, D = 64, feature type = histogram 3.

V. CONCLUDING REMARKS

In this work we proposed LSTM for detecting the sur-
rounding vehicles’ trajectory types. We demonstrated that
the selection of features, architecture, and object localization
quality all play key roles in classifying activities. Trajectory
classification showed more promise when considering a
coarse label (e.g. turning vs forward), but finer activity label
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without noise with noise
feature type M = 2 M = 3 M = 8 M = 12 M = 2 M = 3 M = 8 M = 12

linear 0.64 0.61 0.46 0.30 0.64 0.61 0.46 0.30
linear & angular 0.71 0.56 0.38 0.20 0.71 0.56 0.38 0.20

linear & orientation 0.71 0.36 0.38 0.20 0.71 0.36 0.38 0.20
histogram 3 0.77 0.67 0.17 0.30 0.77 0.61 0.17 0.13
histogram 5 0.48 0.67 0.27 0.20 0.55 0.61 0.04 0.23

TABLE I: Classification Accuracy for S = 2, D = 32.

without noise with noise
feature type M = 2 M = 3 M = 8 M = 12 M = 2 M = 3 M = 8 M = 12

linear 0.70 0.50 0.65 0.30 0.70 0.50 0.65 0.30
linear & angular 0.70 0.58 0.33 0.30 0.70 0.58 0.33 0.30

linear & orientation 0.62 0.53 0.33 0.30 0.69 0.53 0.33 0.30
histogram 3 0.85 0.56 0.21 0.17 0.71 0.67 0.21 0.17
histogram 5 0.77 0.75 0.33 0.25 0.69 0.36 0.21 0.22

TABLE II: Classification Accuracy for S = 3, D = 32.

without noise with noise
feature type M = 2 M = 3 M = 8 M = 12 M = 2 M = 3 M = 8 M = 12

linear 0.85 0.58 0.56 0.30 0.85 0.58 0.56 0.30
linear & angular 0.85 0.67 0.33 0.40 0.85 0.67 0.33 0.30

linear & orientation 0.76 0.61 0.38 0.30 0.76 0.61 0.38 0.30
histogram 3 0.77 0.69 0.40 0.40 0.63 0.61 0.21 0.25
histogram 5 0.77 0.64 0.29 0.30 0.71 0.78 0.25 0.27

TABLE III: Classification Accuracy for S = 3, D = 64

without noise with noise
feature type M = 2 M = 3 M = 8 M = 12 M = 2 M = 3 M = 8 M = 12

linear 0.70 0.58 0.38 0.30 0.70 0.58 0.38 0.30
linear & angular 0.79 0.56 0.33 0.30 0.79 0.56 0.33 0.30

linear & orientation 0.69 0.50 0.33 0.30 0.69 0.50 0.33 0.30
histogram 3 0.85 0.61 0.17 0.15 0.63 0.56 0.33 0.15
histogram 5 0.77 0.67 0.29 0.20 0.70 0.39 0.17 0.27

TABLE IV: Classification Accuracy for S = 4, D = 32.

without noise with noise
feature type M = 2 M = 3 M = 8 M = 12 M = 2 M = 3 M = 8 M = 12

linear 0.77 0.69 0.40 0.30 0.77 0.69 0.40 0.30
linear & angular 0.85 0.58 0.46 0.30 0.85 0.58 0.50 0.30

linear & orientation 0.69 0.53 0.44 0.30 0.69 0.53 0.50 0.30
histogram 3 0.77 0.67 0.27 0.38 0.71 0.44 0.21 0.40
histogram 5 0.77 0.67 0.29 0.13 0.63 0.58 0.13 0.07

TABLE V: Classification Accuracy for S = 4, D = 64.
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Target
LL LU LD UL UU UR RU RR RD DL DR DD

Output

LL 0 0 0 0 0 0 0 0 0 0 0 0
LU 0 0 0 0 0 0 0 0 0 0 0 0
LD 0 0 2 0 0 0 0 1 1 1 0 0
UL 0 0 0 0 0 0 0 0 0 0 0 0
UU 1 0 0 0 1 1 0 1 0 0 0 0
UR 0 0 0 0 0 0 0 0 0 0 0 0
RU 0 0 0 0 0 0 1 0 0 0 0 0
RR 0 1 0 0 0 0 0 0 0 0 0 0
RD 0 0 0 0 0 0 0 0 0 0 0 0
DL 0 0 0 0 0 0 0 0 0 0 0 0
DR 0 0 0 0 0 0 0 0 0 0 0 0
DD 0 0 0 0 0 0 0 0 0 0 0 1

TABLE VI: An example confusion matrix for features of linear and angular changes and M = 12. The green cells show
the instances that were confused with similar classes starting on different sides (e.g. UU instead of LL). The orange cells
show the instances that were confused for another type of turn (left turn instead of right turn).

Target
left straight right

Output
left 3 0 0

straight 0 6 3
right 0 0 1

TABLE VII: Confusion matrix for feature type histogram
and M = 3.

space was shown to be challenging (M = 12). In the
future, additional trajectory samples and classes can be used
to further study the proposed framework. Collecting more
comprehensive data and resampling the current data may im-
prove the performance of the framework further. Comparing
the effectiveness of other classifiers in the ability to model
temporal trajectory evolution may provide further insights.
Training predictive models and improving robustness to 3D
localization noise are important next steps. Furthermore,
generalization of the proposed approach to other types of on-
road maneuvers, such as lane changes [22], will be studied.
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