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Abstract 
In this paper a new "range-space" approach, for 

rendering visual models using a network of multiple omni-
directional vision sensors (ODVS) is presented. This 
integrated approach allows for simultaneous extraction of 
3-D range as well as visual models. The approach requires 
three distinct steps of analyzing multiple ODVS video 
input streams: 1) Search, 2) Match, and 3) Render. At the 
output, a user-specified view is rendered. This three-step 
process does not require 3D model of the scene to be 
provided.  
Keywords: Range-space stereo; wide-baseline stereo; 
multiple baseline stereo; omni-directional video; view 
rendering; virtual walkthrough. 

1. Introduction 
Range-space approach is different from those where 

geometrically valid virtual views are derived using 3D 
models for the entire scene and then individual voxels are 
projected on to small windows of the virtual camera 
locations.  Such approach requires depth recovery for 
every pixel and then rendering of individual voxels to the 
virtual view becomes enormously expensive. In the range-
space approach, only a small set of voxels along the 
desired viewpoint is appropriately rendered. 

The system is an extension of previous multi-camera 
systems. However, it differs them in five distinguishing 
aspects. (1), Multiple omni-directional vision sensors 
(ODVS) are exploited to provide wide scene coverage, 
data redundancy, and a way to synthesize arbitrary views 
by composing multiple cameras’ pixel color. Omni-
directional images (ODI) provide large overlapping region 
that is necessary for stereo matching, and their unique 
periodical signal makes smooth walkthrough possible. (2), 
Cameras are configured at arbitrary disparate location. A 
number of cameras are grouped into a video cluster for a 
given viewpoint. Cameras within the video cluster are 
selected based on robust statistics for matching. (3), Both 
3D and views are generated simultaneously, in which 
virtual and real worlds are immersed into one, in contrast 
to the total virtual of Virtual Reality. No 3D model is 

needed. (4), Distributed computing is utilized to allow 
many views generated concurrently. (5), Efficient data 
structure and image caches are exploited to speed up view 
generation process. 

Range-space approach needs to both estimate depth 
and recover color simultaneously without the intermediate 
sequential steps, so that virtual view synthesis with range 
estimation is performed exactly at the user-specified 
viewpoint. The challenges encountered in stereo vision 
have a straightforward and effective solution in the range-
space approach. The research addresses five major 
challenges of wide-baseline omni-directional stereo: 
Scaling Effect, Foreshortening Effect, Window Cutoff, 
Specular Highlight, and Occlusion. When searching in the 
range space, it enables arbitrary disparate multi-camera 
configurations and it helps overcome the first three 
challenges. Cameras are selected through robust statistics 
to lessen the effects of Specular Highlight and Occlusion. 
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Figure 1 Illustration of the Range-Space Approach. 

Figure 1 shows a view of four ODVS in a multiple 
baseline stereo configuration. The starting point for the 
range-space search is at the virtual viewpoint. For each 
pixel on that virtual image plane, we project a pixel 
frustum whose left, right, top, and bottom boundaries are 
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aligned with the edges of the pixel and whose frustum tip 
is at the virtual viewpoint. The frustum extends outwards, 
away from the virtual camera and into the real-world 
environment.  One such frustum is illustrated in the figure. 

After [1], the only work, which is the closest to the 
similar efforts of both generating views and extracting 
depth using multi-baseline stereo, were done by [2][3]. We 
have shown the technical details of Range-Space Approach 
to efficiently generate views in [4]. The tracking and view 
synthesis can be integrated for surveillance and monitoring 
application [5][6]. Walking person’s views and tracking 
views of a walking person were demonstrated in [5]. In 
[3], three panoramic images were used to extract 3D data 
from the scene. Using these 3D data, new views were 
generated. The work in [2] arranged their 51 standard 
cameras to form a studio dome. The authors searched and 
matched in the image space. Recently, they generated view 
by interpolating between two selected views instead of 
using texture map [7]. McMillan and Bishop [8], who first 
introduced the term of “image-based rendering [9][10],” 
have also generated panoramic images by rotating cameras 
(although the work is not involved in multiple baseline 
stereo). They devised an efficient mean of transferring 
known image disparity values between cylindrical 
panoramic images to a new virtual view. The work of [11] 
used simple edgel primitive to add realism and details 
using recovered view-dependent texture maps and depth 
displacements. Multiple Perspective Interactive (MPI) 
Video [12] utilized a sea of cameras, which were arranged 
facing inwards at the central region of activities, to 
perform model-based motion analysis to a set of image 
sequences. Three-dimensional models of these moving 
objects were computed and integrated with a priori 
environmental models. 

In the following section, we present the details of 
Range-Space Search, Match, and Render. In Section 5, we 
show the results of virtual view synthesis and smooth 
virtual walkthroughs. 

2. Range-Space Search 

2.1. Search Length Determination 
Searching in the range space has different types of 

challenges than searching directly in the disparity/image 
space. In the image space, the amount of search is bounded 
by the available number of pixels or simply by the image 
resolution. We are trying to utilize this resolution aspect to 
limit the search in the range space as well, but with more 
complexity involved. The search criterion is such that the 
interval between two voxels contains maximum depth 
resolution and accuracy. Also, mean time, the overlapping 
3D region in the search has to be minimized to reduce 
repeated computational effort. Put in other words, we 
would like to move exactly one pixel away from the 
current pixel location to the next. 

Searching in the range-space has four important 
benefits: 
1) It allows having the maximum freedom to control the 

span of range to traverse. 
2) It allows choosing the depth resolution to estimate. 
3) The image-rectifying process is embedded in the range-

space search process. 
4) The motion of each camera’s pixel on the epipolar lines 

are directly controlled by the motion of the voxel in the 
range space with respect to the placement and 
resolution of each individual camera. 
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Figure 2 Range-Space Search. The criterion is to preserve 
the maximum depth resolution. In this example, ODVS 2 
that contains the least visual information decides where the 
next voxel is. 

Figure 2 explains the searching algorithm in the range 
space. Points OV , klV , and MO  are known. klV  is the thl  

voxel on the thk  ray; MiO  is the thi  mirror’s focal point. 
Then the angle γ  can be calculated with cosine’s law.  

Based on the projected pixel location of klV  and the 
assumption of a ray cone, the pixel resolution can be 

determined as 
r
1tan 1−≈ρ , where r  is the radius from the 

ODI center to the projected pixel location. This angular 
resolution is purely a function of where the projected pixel 
location is. The line that connects points klV  and )1( +lkV  
has to pass through the center of the circular cone, and 
both points are on the perimeter edge. Finally, the 
searching interval klL1  (or the 1-step search length from 

the thl  voxel to the th)1( +l  voxel on the thk  ray) is found 
using sine’s law. These searching intervals of all cameras 
are compared; the shortest one decides the next voxel 
location. Given a voxel, klV , at the thl  point on the thk  
ray, its corresponding pixel can be found in the ODI, 

{ }NIII ,,1 != , as { }kl
N

kl PP ,,1 !=klP , where 
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N1 II ∈∈ kl
N

kl PP ,,1 ! .
1
 The mechanical searching cycle 

repeats until none of the pixels moves any further while the 
search length approaching infinity. In other words, all of 
the voxels from thereon are projected into the same set of 
pixels, klP .  

The trajectory of range-space search is sinusoidal 
when the virtual rays are projected to the ODI (Figure 3). 
The sinusoidal curves have discontinuities that are caused 
by the non-matching regions. It is now obvious that range-
space search can accommodate the problem of Window 
Cutoff (corresponding windows that do not represent the 
same surface).  

Rays 
Discontinued 
By Non-
Matching 
Regions  

Figure 3 Trajectory of virtual rays in ODI. 

2.2. Matching Template Derivation and Adjustments 
In this section, we describe how to solve the Scaling 

and Foreshortening Effects. To solve the Scaling Effect 
(object appears larger in a closer camera than in a farther 
one) caused by the wide-baseline configuration, the size of 
the matching templates have to be adjusted in accordance 
with the camera arrangement. The derived matching 
templates will have the same visual information 

( ) ( )kl
j

kl
i TT ff = , but with different template sizes 

( ) ( )kl
j

kl
i TT ΔΔ ≠ , where Nji ,,1, !=  and ji ≠ . The set 

of templates is denoted as { }kl
N

kl TT ,,1 !=klT , where 

N1 II ∈∈ kl
N

kl TT ,,1 ! . In general when ( ) ( )kl
j

kl
i TT ff = , 

( )kl
iTΔ  is not equal to ( )kl

jTΔ , where ( ) ( )i
kl

i IT ΔΔ < . 

Again, ( ) ( )kl
j

kl
i TT ff ≈  and ( ) ( )kl

j
kl

i TT ΔΔ ≈  only if 

0)Δ( →kl
iT  and ∞→− Ci

kl OV , or 

Cj
kl

Ci
kl OVOV −=− . Every voxel in klV  corresponds 

to a group of pixels, i.e. a template. In a wide-baseline 

                                                 
1 Omni-directional Images (ODI) represents the world in 

the spherical coordinate system. Therefore, every voxel 
will have a corresponding pixel, provided that there is 
no occlusion. 

omni-directional stereoscopic system, characterized by 

Cj
kl

Ci
kl OVOV −>>− , the closest sensor to the voxel 

has the resulting larger template size as oppose to the 
smallest one for the farthest sensor. Again, due to the non-
uniformity in the omni sensing, the pixel resolution also 
need be taken into account besides the consideration of the 
distance between the voxel and the sensor itself.  

Typical matching techniques in the image space 
utilizing fixed template size are unable to solve this scaling 
effect. Their assumption of having fixed template size for 
every camera means that the physical objects in the range 
space change shapes and sizes with respect to the 
cameras. Obviously, that is physically incorrect! Wang 
and Ohnishi [13] had similar idea of adjusting templates 
that they projected segmented patches to the range space, 
and then performing the deformable template matching by 
hypothesis-and-verification procedure. Their method 
requires starting out in the image domain to get those edge 
features segmented. Segmentation of objects in the image 
is a difficult task and error-prone due to noise. In range-
space approach, we assume that every object, which 
occupies the range space, has a spherical shape. The range-
space algorithms, however, fixate the volume of the 
spherical object (volumetric template), not the template 
size in the image space. The sensor that sees the shortest 
radius of the spherical object (spherical radius) determines 
the volume of the sphere for template derivation. (Or the 
variation that the longest radius is used to determine the 
volume of the spherical object. That will guarantee that the 
farthest camera with the lowest angular resolution will see 
the minimum number of pixels specified in the volumetric 
template size, such as 3x3, 5x5, or 7x7. All other cameras’ 
template, which has shorter distance and higher angular 
resolution to the current voxel, klV .) 

Volumetric template can also easily accommodate the 
Foreshortening Effect. The volumetric template of the 
primary camera is rotated in many directions about the 
fixation point at the current voxel, klV . The matching 
template of the rest of the cameras is the back-projection 
of the primary camera’s volumetric template to their 
respective image coordinate system. The volumetric 
template is simplified as a plane, which occupies the range 
space with its center aligned at the current voxel. When the 
template size is small or the true object’s surface is large, 
the plane approximates the surface. The derived matching 
templates will have the same visual information 

( ) ( )kl
j

kl
i TT ff = , but with different template shapes 

( ) ( )kl
j

kl
i TT ss ≠ . When compared to the work of Maimone 

and Shafer using Local Spatial Frequency representation 
[14], the rotation of 3D template is more intuitive; 
nevertheless, it is also more time-consuming. 

Figure 4 shows four templates of four virtual voxels 
created using the methods discussed. Observe that the size 
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of the templates appears different in different cameras. 
These templates’ size is varying in accordance with the 
camera’s distance to the voxels and with the voxels’ 
corresponding pixel resolutions. 

 
 

 
Figure 4 Templates of four virtual voxels in four different 
cameras. 

3. Range-Space Match 
We are processing both color images and color-edge 

images in parallel using identical mechanisms to search, 
derive matching templates, and match. Robust statistics is 
used to select camera set out of the set of images, because 
some of the cameras may be occluded or having significant 
color deviation from the others caused by the specular 
reflection or the sensor noise. After the preliminary (first 
pass) search and match are finished for the entire virtual 
image, the stored attributes derived from the area-based 
color match and the area-based color-edge match are 
combined and analyzed for each virtual pixel to locate the 
confident seeds for influencing their less confident 
neighboring pixels. Confident seeds are the virtual pixels, 
which have the global minimum for both color match and 
color-edge match occurred at the same estimated 3D 
location along the range search. In the second pass of the 
matching algorithms, these seeds are growing 
simultaneously and competing to correct their 8-neighbors’ 
3D and color. There are various levels of Volume 
Growing. When one level of seeds stops growing based on 
the characteristics of the matching curves, the next level of 
seeds are examined, uncovered, and grown. The final level 
is to fill the occluded regions or the regions where have 
high matching errors (high deviation in colors) using 
geometrical interpolation.  

The following highlights and discusses the special 
features of range-space matching algorithms: 
1) Volume growing in the range space is used to reduce 

false matches based on the characteristics derived 
from the matching curves using edge conformity. The 
matching criterions for volume growing are all based 

on the continuity assumption. Edges yield the 
information of possible geometrical discontinuity. 

2) Robust statistics has to be applied to accommodate the 
problems of having non-uniform number of cameras 
being used for matching along the virtual ray.  

3) A range-space match must recover 3D and color 
simultaneously. There is no reference camera/color 
that can be assumed unless the viewpoint is lying 
exactly at one of the cameras’ center. 

4) Every virtual pixel can be processed in parallel and 
with identical mechanisms independently from each 
other. Computation time is independent of the 
complexity of the scene composition. It is completely 
a function of the number of cameras used and the 
viewpoint location, as opposed to the feature-based 
matching that depends on the scene structure. 
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Figure 5 Definition of error region and from where the 
matching attributes are derived.  

In regard with the first uniqueness, the concept of 
error region is used for deriving attributes in the volume 
growing process (Figure 5). A region is considered instead 
of investigating each individual raw matching error. An 
error region begins when the matching error is the first 
time lower than a set threshold and ends when the 
matching error is higher than the threshold plus the local 
minimum error. We do not pick the lowest error along the 
virtual ray as the best match. Both area-based color match 
and area-based color-edge match are used to support the 
correctness of each other’s global minimum. They are 
processed in parallel using the same searching and 
matching mechanisms. The area-based color-edge match is 
relatively insensitive to the set threshold of the edge map, 
due to the verification support from the color match, and 
thus it is not as sensitive to the thickness and 
incompleteness of the detected edges. The method here is 
treating color-edge match as just another area-based 
match. The area-based color match is also rather 
insensitive to the choice of template size, because the 
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matching results is not utilized directly to finalize a good 
match. It also has to be verified by a good edge match. 
Thus, no large (or coarse-to-fine) template is necessary. 
The matching does not assume a one-to-one 
correspondence. When the matching errors on a particular 
virtual ray are higher than the acceptable threshold (for 
example, a normalized value of 32x32), the pixel is 
marked low confident (either occlusion or specular 
highlight occurs). 

In the matching process, due to the disparate views of 
multiple camera stereo, multiple true surfaces are possibly 
observed. The Uniqueness Constraint that traditionally 
applied to the disparity-space match becomes invalid in the 
case here. For a desired virtual image size of S , there 
exist S  number of rays, { }S1 RRR ,,!=  from the 

viewpoint, OV . Each ray in R  is discretized into collinear 
voxels, ( ){ }kqqkk VVV ,,, 11 −= !kR , where Sk ,,1!=  and 

∞<≤ q1 . Considering the set of virtual rays, R , each ray 
will eventually hit a surface. Therefore, there exists at least 
one voxel, kaV , on each ray intersecting a physical 
surface, where kR∈kaV . The set of true voxels, which 
intersects physical surfaces, is denoted as 

{ }kn
T

nk
T

k
T VVV ,,, )1(1 −= !k

T R  where kk
T RR ⊂ , and 

φ≠k
T R . Since matching process includes noise, false 
matches exist. Then, the set of possible voxels can be 

{ }kq
P

qk
P

k
P VVV ,,, )1(1 −= !k

P R , where kk
P RR ⊆ , 

Sk ,,1!=  and ∞<≤ q1 . Both multiple true matches and 

multiple false matches can exist in k
P R . 

We consider a local minimum as a region of 3D points 
( “error region” in Figure 5). Eight attributes derived from 
every candidate LkSSD ε  (the error region with local 
minimum at Lε  that passes below the threshold line) are 
stored for this delayed matching process. Each local 
minimum forms its own region. The region starts when the 
error after Sε  is the first time lower than the threshold line 

and ends when the error at Eε  is higher than the threshold 
plus the local minimum error. It is important to note that 

the edge’s 
′l

Lk
E SSD ε  is recorded as the SSD of the color 

match at the local minimum of the color-edge match. 
Recall that there are multiple of these candidates, 

l
LkSSD ε  and 

l
Lk

E SSD ε , associated with any given virtual 
ray when multiple local minimums exist. Now that the 
error region is considered, the set of possible voxels is 
modified as { }q1)(q0 kε

P
kε

P
kε

P
k

P VVVR ,,,
−

= ! , where 
kk

P RR ⊆ , Sk ,,1!=  and ∞<≤ q0 . When 0=q , it 
means that there is no local minimum exists, that is when 

all klSSD  are higher than the set threshold. Usually, this 
happens when occlusion or specular highlight occurs. Each 
element in k

P R  covers a number of voxels that spans the 
error region. The number of voxels includes 

ikε
PV∈

i
E

i
S

i
L k

P
k

P
k

P VVV εεε and,, , where qi ,,0 != . 
Both multiple true matches and multiple false matches 

can exist in k
P R . It is necessary that 

{ } φ≠∈∩ k
T

k
P RR 11 | k

T
k

T VV , in order for the first, 
true voxel to be recovered for a ray at a particular 
viewpoint. To extract the first, true voxel out of k

P R , we 
make the following assumptions:  
1) At 1k

TV , the voxel  is seen by the majority number of 

cameras. That is kl
F

kl
T TT > , when kl

TT∈kl
iT  and 

we know that )f( kl
iT  is true. In short, 

{ } φ≠∈∩ k
T

k
P RR 11 | k

T
k

T VV . 
2) Every object’s surface in view will be accompanied by 

sharp edges. All of the edges, which bound the surface 
of an object, can be detected. 

3) Edge match is supported by the color match. 
4) The rays that pass through the object borders have 

only one local minimum. 
5) The object surfaces are continuous. Therefore, the 

distance of objects varies smoothly with viewing 
direction, except at object borders (defined by 
edges)— Continuity Constraint. 

6) The images and the matching process have negligible 
noise. 
The information at an edge is a more reliable one, 

which serves to locate the confident seed to uncover other 
true voxels. Assumption 2 indicates that there is at least 
one seed available. When both color match and color-edge 
match are used, the set of possible voxels becomes 

{ }kp
P

pk
P

k
P

kq
P

qk
P

k
P EEEVVV ,,,;,,, )1(1)1(1 −−= !!k

P R , 
where qp ≤ . Due to Assumption 3, 

{ }kp
P

k
P

kb
P EEE ,,1 !∈∀  from the color-edge match, 

there is a corresponding { }kq
P

k
P

ka
P VVV ,,1 !∈  from the 

color match, and Okb
P

Oka
P VEVV −=− . When both 

color match and color-edge match are used with the 
concept of volume growing, under Assumption 3, the set 
of possible voxels is modified again as 

{ }pkε
P

kε
P

kε
P

kε
P

kε
P

kε
P

k
P EEEVVVR

1)(p0q1)(q0

,,,;,,,
−−

= !!

where qp ≤ . The elements in each 
bkε

P E  must satisfy the 

three conditions: (1), 
a
L

b
L

a
L kk

P
k

P LEV εεε
1≤− ; (2), 

ab
L kk

E SSDSSD εε ≤
′

; (3), 
a
E

b
L

a
S kk

E
k LLL εεε ≤≤ , i.e. 

akε
PV  and 

bkε
P E  are in the same error region. Assumption 4 says 
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there is at most one local minimum. When multiple edges 
exist in a 

1kε
P E  within the global minimum, we pick the 

first candidate edge match; the set at the object borders 

becomes { }11

; LL k
P

k
P EV εε=

′k
P R . With the set 

{ }11

; LL k
P

k
P EV εε=

′k
P R  exists, a confident seed is found. 
Based on the Continuity Constraint, given a true voxel 

ak
PV

ε  in k
P R , there exist at least another true voxel 

bk
PV

ε8  in the 8-neighboring of kR , such that 
bk

PV
ε8  is 

within the object borders and 
aba kk

P
k

P LVV εεε
1

8 ≤− . 

The new point is turned into another seed pixel at the next 
iteration. Eventually, a surface is grown within the bound 
of the edges. The minimum number of surface is 1, while 
the maximum number of surface equals the number of rays 

having the set of { }11

; LL k
P

k
P EV εε=

′k
P R . The grown 

surface will have a maximum deviation of ∑
=

S

k

k a

L
1

1
ε  from 

the first seed. 
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Figure 6 Snap shots of the Volume Growing process. The 
final image (bottom-right) shows improvement over the 
initial image (top-left). 

When more than one seed are competing for 
influencing the same neighboring pixel during the growing 
process and if all of them meet the continuity constraint, 
all of the depths along the viewing direction are valid. 

Then, because of the back-to-front projection concept, the 
farther depths are occluded by the closer ones. The closest 
depth dominates the filling of virtual pixel’s color. That 
means that the voxel chosen for the view synthesis is the 
first element in k

T R , which has the closest distance to the 
viewpoint. 

Figure 6 shows a few snap shots of the growing 
process. The synthesized images are each 212x140. The 
top left image is synthesized by picking the lowest error 
along each virtual ray. The red-coded region is due to the 
cropping of the original ODI, while the orange-coded 
regions are the low confident regions. Visual errors can be 
easily spotted. The final image is the result from Volume 
Growing after a total of 5 steps. The steps are indicated 
with the numbers. 

4. Range-Space Render 
After a good match is found along the virtual ray, we 

recover both the voxel, 
akV ε , and its corresponding pixel, 

ak
iP ε , for every valid camera within the camera set, 

ak
CSNi ε,,1 != . The valid cameras in a camera set are the 

cameras, which do not violate the matching conditions and 
are not the outliers. Their pixel’s color, 

ak
iP ε , are mixed. 

The composite color, 
ak

VP ε , is used to fill the virtual pixel. 
This process needs to be carried out carefully; otherwise, 
incorrect pixel color will cause visually unpleasant virtual 
view, even if the 3D is precisely determined (correct range 
but incorrect color type of error occurs). 

ODVS1 ODVS2 

ODVS3 ODVS4 

θθθθ2 θθθθ1 

Viewing  
Angle 

 
Figure 7 Viewing angle is the angle between the virtual 
ray and the ray connecting the valid camera’s center to the 
estimated voxel.  

The virtual pixel color is the weighted composite 
color of multiple cameras’ pixel.  The weights are a 
function of the valid cameras’ viewing angle (see Figure 7) 
to the estimated voxel and their respective matching error 
at that voxel. They are independent of the cameras’ 
distance to the subject voxel. When using this weighted 
scheme, not a sole camera’s pixel can fully dominate the 
composite color, even when the virtual viewpoint 
coincides exactly at one of the camera’s center. Therefore, 
in order for the synthesized view to be clear and sharp, so 
must the estimated range be accurate. In other words, when 
we see a clear synthesized view, we are quite sure that the 
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underlying 3D of the virtual pixels are accurate, unless the 
color in the scene is rather homogeneous. 

When the viewing angle of a camera is zero, which 
means the virtual ray completely coincides with the 
camera’s physical ray, the camera’s pixel has stronger 
influence in the process of virtual pixel synthesis. The 
opposite case is when the angle is 180 degrees apart, then 
that camera pixel will have the least influence on the 
composite color. Also, the greater the matching error, the 
smaller the influence a camera has on the color synthesis. 
The composite color of a virtual pixel can be computed as   

( )
a

a

ak
CS a

CS a

a
ak
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, 
where θ  are the viewing angles, SSD  are the matching 
errors, 

ak
jP ε  are the pixel color of physical cameras, and 

ak
CSN ε  is the number of valid cameras within a camera set. 

ak
VP ε  is the resulting composite color. Three channels, 

Red, Green, and Blue are performed separately. 
An alternate form of weighting function that does not 

include the matching error can be expressed as 
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In this case, when a physical ray coincides with the virtual 
ray, i.e. 0=θ , the camera will dominate the composite 
color, especially if only two cameras are valid within the 
camera set ( 2=

ak
CSN ε ). 

5. Experimental Results 

 

Figure 8 A scene for visual modeling. 
Virtual view synthesis experiments are performed 

inside a room (shown in Figure 8). The room size is 258 x 
128 sq. in. It is a box-like structure. The omni-directional 
images are captured using a single hyperboloidal mirror 

with vertical field of view of about 270 degrees. The 
images were taken at regular intervals defined by the grids 
on the green cardboard (Figure 9). Camera 1 is the 
reference camera coordinate, from where all the estimated 
3D in the experiments are measured. The highlighted 
cameras are the ones formed a video cluster for those 
viewpoints. There are a total of 36 cameras/images taken 
inside the scene. These cameras can form various 
combinations of video clusters with many possible choices 
of baselines and number of cameras. 
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Figure 9 Sensor layout. 

5.1. Virtual View Synthesis 
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Figure 10 Error comparison with the cameras in the video 
cluster and with the true camera. 

For the experiment, we use the Cameras 15, 16, 17, 
21, 23, 27, 28, and 29 for view synthesis. The virtual 
viewpoint is at the Camera 22’s projection center. The 
synthesized panoramic view is compared with the real 
panoramic view at the same viewpoint, with the panoramic 
view of the eight cameras that were used for matching, and 
with the panoramic view of a camera that is the farthest 
from the cluster and is uncorrelated. The result from the 
farthest camera gives us a reference for comparison. From 
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Figure 10, the plot clearly shows that the synthesized 
views have the lowest error when compared to the real 
views of Camera 22. None of the cameras that were used 
for matching comes close to the resemblance between the 
synthesized views and Camera 22’s views. Camera 1, 
which is the farthest camera away from the video cluster, 
shows no relation to the synthesized views, and its error 
remains consistently high. Without volume growing 
(average error is 7.43), the average view synthesis error is 
1.22 per pixel value higher than the one with volume 
growing (average error is 6.22). The improvement is 
16.35%. 

Figure 11 shows real and synthesized views. The 
numbers on the figures give names to Panoramas 1 to 6. 
Panoramas 1 to 3 are real. They are from Camera 29, 15, 

and 22, respectively. Cameras 15 and 29 have the widest 
baseline of 51 inches within the video cluster. Synthesized 
Panoramas 4 and 5 are supposed to resemble Panorama 3. 
Panorama 5 is the one before volume growing. Errors can 
be readily observed. Again, the red-coded regions in 
Panorama 5 are due to the cropping of the original ODI. 
The orange-coded regions are the occluded regions or the 
regions where high color deviation occurs due to specular 
lighting effect. The color-coded regions with red, orange, 
and gray are not compared. Panorama 6 shows the 
difference between Panorama 3 (real) and Panorama 4 
(synthesized). The errors are mainly at the high frequency 
regions. Figure 12 shows the close-up views before and 
after volume growing. The dramatic improvement in view 
synthesis after volume growing can be easily observed.

1

2

3

4

5

6

 
Figure 11 Real and synthesized panoramic views. 

 
Figure 12 Synthesized views before (left) and after 
volume growing (right).  

5.2. Demonstrations of Smooth 3D Virtual 
Walkthrough 

 
Figure 13 Smooth walk path and video clusters. 
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The smooth walk path is shown in Figure 13. The 
walk path has a total of 168 inches in length. It is walking 
from the bottom yellow point to the top point. Three video 
clusters are available. Each cluster includes 10 cameras. 
Some cameras are shared by two clusters. A total of 22 
cameras were used for the entire path. When the 
viewpoints are within and a little beyond the cluster (based 
on the viewing direction and viewpoint), that cluster is 
selected to generate views. Views 1 to 39 used the first 
cluster, while views 40 to 77 used the second one. The rest 
was using the third cluster. Ninety views were synthesized 

along this path. In this work, we show the views at discrete 
sampling intervals of every 8th view in Figure 14. The view 
sequence is from left to right and top to bottom. Figure 15 
shows the 12 consecutive smooth views, from the 75th 
view to the 86th view, toward the end of the walkthrough 
after passing ahead the third video cluster. Smoothness in 
the views can be easily observed. The walkthrough 
includes both simultaneous translation and rotation. The 
peacock on the mural becomes larger in view and the chair 
is seen less at the end of the walk. 

 
Figure 14 Twelve discrete synthesized views extracted from smooth virtual walkthrough. 

 
Figure 15 Twelve consecutive synthesized views extracted from the 75th view to the 86th view. 
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6. Concluding Remarks 
In this paper, we have introduced a range-space search, 
match, and render technique. This system allows viewers 
freely walk through a remote dynamic environment 
concurrently with their individually desired viewpoint. 
When these views are synthesized from several wide-view 
ODI, only the necessary 3D are derived. The arrangement 
of the cameras can be arbitrary and the searching 
mechanism is general. Range-space search overcomes the 
problems of scaling effect, foreshortening effect, and 
window cutoff—three of the five major research 
challenges of wide-baseline omni-directional stereo. The 
multiple baseline stereo is also modified to handle 
occlusion and specular highlight. Cameras within a video 
cluster are chosen based on robust statistics. Volume 
growing has the major effects on reducing most of the false 
matches. Error region, which is the basis for volume 
growing, is defined and attributes are derived from the 
matching curves. Both area-based color match and area-
based color-edge match are processed in parallel with 
identical mechanisms. The derived attributes are combined 
and analyzed in the range space to locate confident seeds. 
These confident seeds are used to correct their 8-
neighboring pixels’ 3D and color based on continuity 
constraint. Low confident regions are filled with 
geometrical interpolation. Virtual pixel color is 
synthesized using parameters of viewing angles and 
matching errors. The results show clear virtual view 
synthesis. View synthesis has an overall average error of 
6.22 normalized pixel error and an overall average 
improvement of 16.35% over the results before volume 
growing. Viewers actively explore the scene. Smooth 
walkthrough is put together by pieces of views through 
time. 
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